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Abstract

Non-homogeneous Poisson processes with periodic claim intensity rate have been proposed as
claim counts in risk theory. Here a doubly periodic Poisson model with short- and long-term trends
is studied. Beta-type intensity functions are presented as illustrations. The likelihood function and
the maximum likelihood estimates of the model parameters are derived.

Doubly periodic Poisson models are appropriate when the seasonality does not repeat exactly
the same short-term pattern every year, but has a peak intensity that varies over a longer period.
This reflects periodic environments like those forming hurricanes, in alternating El Niño/La Niña
years. An application of the model to the data set of Atlantic hurricanes affecting the United States
(1899–2000) is discussed in detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Non-homogeneous Poisson (NHP) processes are considered a more realistic alternative
than the classical Poisson process for modelling the frequency of claims in risk theory.
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The NHP time-dependent intensity function is appropriate for describing the fluctuations
of risks, subject to seasonality in their claims intensity.

Beard et al. [3] and Daykin et al. [8] claim that the risk process is often subject to
continual changes in risk propensity. This is true for both the long-term, systematic, slowly
changing trends as well as the short-term random variations that affect the number of
claims. The model to be employed must then suitably define a time-dependent function
or a stochastic process{λ(t)}t≥0, instead of the constant Poisson parameterλ.

Berg and Haberman [4] usea non-homogeneous Markov birth process, of which the
NHP is a special case, to predict trends such as the time to the next claim or the expected
total number of claims in a year inlife insurance claim occurrences.

In practice, natural phenomena evolving in a periodic environment, or under seasonal
conditions, affect insurance claims. For example, weather factors are known to affect car
or fire insurance claims, while seasonal snow storms in the north and hurricanes or floods
in the south affectproperty–casualty insurance. A periodic time-dependent intensity rate is
a reasonable model for the claim frequency in such situations.

Chukova et al. [5] shows that a random variableX with almost-lack-of-memory

P{X > x + c | X > c} = P{X > x}, for somec,

has a periodic hazard rate (intensity) function of periodc, h X (t) = fX (t)
F̄X (t)

, for t > 0.

Obvious applications in risk theory are in modelling random phenomena with seasonal
effects; car accidents, hurricanes. Some characterization properties of the NHP process
with periodic failure rate are derived in [5,9].

A compound NHP process with periodic claim intensity rate case, called a periodic
risk model, is considered and the related ruin problems in these models are discussed
by Dassios and Embrechts [7], Asmussen and Rolski [1,2] and Rolski et al. [18]. These
use the theory of piecewise-deterministic Markov processes, together with some standard
martingale techniques and a corresponding average arrival rate risk model, respectively.

Garrido et al. [10] exploit the corresponding properties in a risk model, where the claim
intensity rates are modelled by a NHP process with (single)periodic intensity. Some prop-
erties of such processes, illustrated by a beta-shape periodic intensity function, are dis-
cussed. Morales [15] further explores the singly periodic NHP model by defining a Gaus-
sian intensity with which he considers the problem of ruin through a simulation study.

Furthermore, Garrido and Lu [11] consider a model with a doubly periodic intensity
rate, where periodicity does not repeat exactly the same pattern in each short-term
period; rather, its peak intensity varies over a longer period. This model reflects periodic
environments like those forming hurricanes, in alternating El Niño/La Niña years.
Parametric forms of the doubly periodic intensity function, such as the double-beta and
the sine-beta ones, are proposed. These parametric forms are fitted here to hurricane data,
emphasizing the inferential aspects.

Tropical storms and hurricanes periodically affect every coastal US state along the
Atlantic and the Gulf of Mexico, from Texasto Maine, year after year. According to Cole
and Pfaff [6], much speculation exists regarding the significance of the El Niño effect. This
is a phenomenon generating abnormally warm surface water temperatures off the coasts
of Ecuador and Peru, affecting global climate in the short term, including weather patterns
across North America. Particular attention has been directed toward the potential effects
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of the El Niño phenomenon on hurricane frequency and the strength attained by tropical
cyclones during El Niño years, in comparison to non-El Niño years (called La Niña ones).
These can be seen as long-term climatological and periodical effects on North American
weather.

Parisi and Lund [17] study the annual arrival cycle and return period properties of
landfalling Atlantic Basin hurricanes. A NHP process with a periodic intensity function
is used to model the annual cycle of hurricane arrival times. The data used in their
study contain all Atlantic Basin hurricanes that have made a landfall in the contiguous
United Statesduring the years 1935–98, inclusive. Kernel methods are used to estimate the
intensity function and the standardnormal kernel function is selected.

In this paper, apart from considering the seasonal effects on the hurricane arrival times,
we also consider global climatological and periodic effects and try to model the occurrence
times of Atlantic hurricanes using a doubly periodic NHP process. A double-beta-type
intensity function is used in this parametric model and the Atlantic hurricanes affecting
the United States 1899–2000 data set [16,13] is used to estimate the parameters in the
model. By contrast to the method proposed by Parisi and Lund [17], a parametric statistical
inference approach is used here to estimate the intensity function. Maximum likelihood
estimators of model parameters for this data set are obtained.

A brief description of the hurricane data set is given inSection 2. NHP models with
singly or doubly periodic intensity are introduced. The statistical inference of the model
parameters ispresented inSection 3. Finally, in Section 4we discuss the fit of different
models to the hurricane data and give some comments. The appendix contains some tables
and remarks used in the goodness-of-fit assessment.

2. The hurricane data set and proposed models

The data used for our study come from Neumann et al. [16], who report on 155
hurricanes that crossed or passed immediately adjacent to the Unites States coastline
(Texas to Maine), 1899 through 1992. Landreneau [13] contains 12 additional hurricanes
for the years 1993 to 2000 and is obtained from the National Hurricane Center Web site.
Henceforth we call this combined data set “the hurricane data”. Thus, over the 102-year
period 1899 to 2000, a total of 167 category 1 to 5 hurricanes crossed the Atlantic United
States coastline at one or more points.

The average annual number is 1.64 over the whole period, which means an average
of one to two hurricane landfalls per year. The years with a maximum number of six
hurricanes were 1916 and 1985, while 19 out of the 102 years had no hurricanes. It can be
observed that the hurricane season starts in June and ends in November over those years.
Furthermore, the hurricane season peak period lasts from mid-August to October, with
September having had the most major hurricanes (38.9% of all hurricanes).Fig. 1 shows
the annual distribution of those 167 Atlantic hurricanes, whileTable 1gives their monthly
distribution (seeAppendix Afor a discussion on the fit of the doubly periodic model to
this data set).

Let Nt , the number of events occurring in an interval of the form[0, t), be aNHP
process withintensity functionλ(t) for t ≥ 0. By definition, the probability ofn claims
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Fig. 1. US Atlantic hurricane (1899–2000) annual counts.

Table 1
Monthly distribution of the hurricane data

Month Number of occurrences Proportion (%)

June 11 6.6
July 17 10.2
August 44 26.3
September 65 38.9
October 26 15.6
November 4 2.4

167 100.0

occurring in atime interval[0, t) is given by

P{Nt = n} = e−Λ(t)[Λ(t)]n

n! , n ∈ N, (1)

whereΛ, called the cumulative hazard function or the cumulative intensity function of the
process, is defined byΛ(t) = ∫ t

0 λ(v)dv for t ≥ 0. That is, for a NHP process withintensity
functionλ, Nt has a Poisson distribution with meanΛ(t).

When its intensity functiondoes not depend on time, i.e.λ(t) = λ, for all t ≥ 0, the
corresponding NHP process is the classical homogeneous Poisson process, whereΛ(t) =
λt is linear. FromTable 1we see that here the maximum likelihood estimator (MLE)
of λ would beλ̂ = 1.64 hurricanes per year, for the homogeneous Poisson model. See
Appendix Afor the goodness-of-fit analysis of this model.
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Now, consider the case where the risk process evolves in a periodic environment, as
when the claim arrival rate depends on the seasons. Then the intensity function of a
NHP process is aperiodic function, say with a period ofc > 0 years. Consequently
t − � t

c �c ∈ [0, c), for t ≥ 0, is the time of the season, where�t� is the integer part
of t .

Models with single and double periodicity are introduced in the following section,
where they are illustrated with beta-type functions.

2.1. A singly periodic intensity model

Assume that the short-term period is 1 (year). Letλ1 be a beta-type function, with
parametersp1, q1 ≥ 1, defined on[0, 1], such thatλ1(t∗1) = 1, wheret∗1 ∈ [0, 1] is the
mode of the function. That is,

λ1(t) =



( t−m1

D

)p1−1 (
1 − t−m1

D

)q1−1

α∗
1

, 0 ≤ m1 ≤ t ≤ m2 ≤ 1,

0, otherwise

(2)

whereD = m2 − m1 and

α∗
1 =
(

t∗1 − m1

D

)p1−1(
1 − t∗1 − m1

D

)q1−1

, (3)

is a scale factor, while

t∗1 = m1 + D
p1 − 1

p1 + q1 − 2
, (4)

is the mode ofλ1, so at themode,λ1(t∗1) = 1 is thepeak level.
Then the singly periodic beta intensity function is given by

λ(t) = λ∗
0λ1 (t − �t�) , for t ≥ 0, (5)

whereλ∗
0 > 0 is the (constant) peak level forthis intensity andλ1 is given in (2).

The corresponding cumulative intensity functionΛ(t) is

Λ(t) = λ∗
0D

α∗
1

[
�t�B(p1, q1) + B

(
p1, q1; t − �t� − m1

D

)]
, t ≥ 0, (6)

where

B(p, q) =
∫ 1

0
v p−1(1 − v)q−1dv = Γ (p)Γ (q)

Γ (p + q)

is the beta function atp, q > 0, while

B(p, q; t) =




0, if t ≤ 0∫ t

0
v p−1 (1 − v)q−1 dv, if t ∈ (0, 1)

B(p, q), if t ≥ 1

,

is the usual incomplete beta function.
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Following the results of Garrido and Lu [11], the NHP process{Nt }t≥0 with intensity
function given in (5) can be decomposed as

Nt = M1 + M2 + · · · + M�t� + Nt−�t�, t > 0,

where {Mi }i≥1 are i.i.d. Poisson random variables distributed asN1, with meanΛ(1),
representing counts for complete years. TheseMi are independent ofNt−�t�, the latter
being a Poisson r.v. with meanΛ(t − �t�), for t − �t� ∈ [0, 1), representing the count in
the final incomplete year. HereΛ(1) andΛ(t − �t�) can be derived from (6), respectively.

An alternative simple form for λ1, which can result in a better fit with real data,
is the generalized three-parameter beta function (denoted asG3B(p1, q1, ε); see [12],
Chapter 25), given by

λ1(t) =



( t−m1

D

)p1−1 (
1 − t−m1

D

)q1−1

α∗
1

[
1 − (1 − ε)

( t−m1
D

)]p1+q1
, 0 ≤ m1 ≤ t ≤ m2 ≤ 1,

0, otherwise

(7)

wherep1, q1 ≥ 1, ε > 0, D = m2 − m1 and

α∗
1 =
(

t∗1−m1
D

)p1−1 (
1 − t∗1−m1

D

)q1−1

[
1 − (1 − ε)

t∗1−m1
D

]p1+q1
, (8)

is again a scale factor, while

t∗1 = m1 + D
3 − p1 − (1 + q1)ε +√[1 + p1 + (1 + q1)ε ]2 − 8(p1 + q1)ε

4(1 − ε)
, (9)

is the mode of functionλ1, given by (7), such thatλ1(t∗1) = 1. Notethat asε → 1, (9)
tends to (4).

Then for the intensity function, given by (5), the corresponding cumulative intensity
functionΛ is derived as

Λ(t) = λ∗
0D

α∗
1ε p1


�t�B(p1, q1) + B


p1, q1;

ε
{

t−�t�−m1
D

}
1 − (1 − ε)

{
t−�t�−m1

D

}



 , t ≥ 0.

(10)

2.2. A doubly periodic intensity model

Assume that the peak values or the levels of the short-term intensity function vary
periodically with periodc (an integer number of years). If, as above, the short-term
intensity is the beta-shape function given in (2), then the doubly periodic beta intensity
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function is given by

λ(t) =




λ∗
0λ1(t − �t�) if 0 ≤ t −

⌊
t

c

⌋
c < 1

λ∗
1λ1(t − �t�) if 1 ≤ t −

⌊
t

c

⌋
c < 2,

...
...

λ∗
c−1λ1(t − �t�) if c − 1 ≤ t −

⌊
t

c

⌋
c < c

(11)

whereλ∗
0, . . . , λ

∗
c−1 are all positive levels. The resulting cumulative intensity functionΛ(t)

is given by

Λ(t) =
⌊

t

c

⌋
DB(p1, q1)

c−1∑
j=0

λ∗
j

α∗
1

+ DB(p1, q1)

�t−� t
c �c�−1∑

j=0

λ∗
j

α∗
1

+ DB

(
p1, q1; t − �t� − m1

D

) λ∗
�t−� t

c �c�
α∗

1
, t > m1, (12)

andΛ(t) = 0 for 0 ≤ t ≤ m1.
The corresponding NHP process{Nt }t≥0 with doubly periodic intensity can be

decomposed as

Nt = M1 + · · · + M� t
c � + N∗

t−�t�−m1
D

, t ≥ 0, (13)

where

N∗
t−�t�−m1

D

=
�t−� t

c �c�−1∑
j=0

N ( j )
c + N

(�t−� t
c �c�)

t−�t�−m1
D

, (14)

and the{Mi }i≥1 are i.i.d. Poisson distributed with meanDB(p1, q1)
∑c−1

j=0
λ∗

j
α∗

1
, while N ( j )

c

is Poisson with meanDB(p1, q1)
λ∗

j
α∗

1
, for j = 0, 1, . . . , �t − � t

c �c� − 1, respectively, and

N
(�t−� t

c �c�)
t−�t�−m1

D

is also Poisson with meanDB(p1, q1; t−�t�−m1
D )

λ∗
�t−� t

c �c�
α∗

1
. All these random

variables are mutually independent.

2.3. A double-beta periodic intensity model

One way to reduce the number of free parameters, in the previous model in (11), is
to assume a parametric form for the long-term intensity also. Here this is reasonable if it
can be assumed that the short-term peak intensity values are affected periodically by some
smoothly varying conditions, such as the surface water temperatures in El Niño/La Niña
phenomenon.

More specifically, here we assume that the peak beta values,λ∗
0, . . . , λ

∗
c−1 in the

short-term intensities, follow another continuous function of periodc (an integer number
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of years), called the long-term intensity function. For instance, a beta functionλc(t) is also
proposed for the long-term intensity:

λc(t)= a + b − a

α∗
c

(
t − mc

c
−
⌊

t − mc

c

⌋)pc−1

×
[
1 −
(

t − mc

c
−
⌊

t − mc

c

⌋)]qc−1

, t > 0, (15)

where

α∗
c =
(

t∗c − mc

c

)pc−1(
1 − t∗c − mc

c

)qc−1

, (16)

is again a scale factor, soa andb are, respectively, the minimum and maximum amplitudes
of the peak values. Heremc is the starting point of the complete cycle of the long-term beta
function and

t∗c = mc + c

(
pc − 1

pc + qc − 2

)
(17)

denotes the mode ofλc.
Then the double-beta intensity function is given by

λ(t) = λc

(
�t� −
⌊

t

c

⌋
c + t∗1
)

λ1(t − �t�), for t ≥ 0, (18)

whereλ1 andλc are given in (2) and (15), respectively.
The solid line inFig. 2 illustrates the shape ofλ(t) in (18), when p1 = 3, q1 = 2,

m1 = 5
12, D = 6

12, c = 5, pc = 2, qc = 12
3, mc = 3.75,a = 3 andb = 7. The peak values

of the short-term betaλ1 fall on the dotted line plotting the long-term betaλc. This serves
to explain the fluctuations in the peak values ofλ1, the short-term beta periodicity.

If the intensity functionλ is given by (18), then the corresponding cumulative intensity
functionΛ has the form

Λ(t)=
⌊

t

c

⌋
DB(p1, q1)

c−1∑
j=0

λc( j + t∗1)

α∗
1

+ DB(p1, q1)

�t−� t
c �c�−1∑

j=0

λc( j + t∗1 )

α∗
1

+ DB

(
p1, q1; t − �t� − m1

D

)
λc
(⌊

t − ⌊ t
c

⌋
c
⌋+ t∗1
)

α∗
1

, t ≥ m1, (19)

whereλc(t) is given by (15).
For any t ≥ 0, the random variableNt admits the same decomposition as in (13),

where the{Mi }i≥1 are i.i.d. Poisson, here with meanDB(p1, q1)
∑c−1

j=0
λc( j+t∗1)

α∗
1

; they are

independent ofN ( j )
c , for j = 0, 1, . . . , �t − � t

c �c� − 1, and ofN
(�t−� t

c �c�)
t−�t�−m1

D

, which are

also Poisson, here with meansDB(p1, q1)
λc( j+t∗1)

α∗
1

, for j = 0, 1, . . . , �t − � t
c �c� − 1 and

DB
(

p1, q1; t−�t�−m1
D

)
λc(�t−� t

c �c�+t∗1 )

α∗
1

, respectively.
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Fig. 2. The double-beta intensity functionλ(t).

This decomposition property of periodic NHP models is particularly useful for
statistical inference, as seen in the following section.

3. Statistical inference

For the double-beta periodic intensity model in (18), the intensity is a parametric
function with parametersp1, q1, pc, qc, a andb. It is possible to estimate these parameters
from data using maximum likelihood estimation. Note that other model parameters such
asm1, m2, mc andc can usually be set at values observed from the data set.

Letd be the timescale in each short-term cycle; hered = 1
12, amonth in each year. Then,

for the short-term intensity function in (2), denote bym1 andm2 two integer multiples of
d; herem1 andm2 correspond to two specific months in the year, marking the beginning
and end of the hurricane season. Furthermore, defineJ as

J = m2 − m1

d
= D

d
,

that is the total number of months in each year over which the intensity function is positive.
This gives a convenient partition of each year cycle[0, m1), [m1, t1), [t1, t2), . . . , [tJ , m2),

[m2, 1], where

t j = m1 + jd, for j = 0, . . . , J. (20)

Under the double-beta intensity function given in (18), the contribution to the likelihood
for the first year of the first cycle is
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L1,1 =e− ∫ m1
0 λ(v)dv

J∏
j=1


e

− ∫ t j
t j−1

λ(v)dv

(∫ t j

t j−1

λ(v)dv

)n(1)
j,1


 e

− ∫ 1
m2

λ(v)dv
(21)

=e− ∫ 1
0 λ(v)dv

J∏
j=1

(∫ t j

t j−1

λ(v)dv

)n(1)
j,1

,

wheren(1)
j,1 is the number of events which occurred within thej -th month[t j−1, t j ) of the

first year of the first cycle, for j = 1, . . . , J . The first and the lastterms in (21) represent
the likelihood of having no hurricanes outside the time interval[m1, m2].

In general, the contribution to the likelihood by thek-th year of thei -th cycleis similarly
given by

Lk,i = e− ∫ k
k−1 λ(v)dv

J∏
j=1

(∫ (k−1)+t j

(k−1)+t j−1

λ(v)dv

)n(i)
j,k

, k = 1, . . . , c, i = 1, . . . ,

⌊
t

c

⌋
,

wheren(i)
j,k is the number of hurricanes within thej -th month of thek-th year of thei -th

cycle.
Hence for thei -th cycle,i = 1, . . . , � t

c �, the total contribution to the likelihood is given
by

Li =
c∏

k=1

Lk,i = e− ∫ c
0 λ(u)dv

c∏
k=1

J∏
j=1

(∫ (k−1)+t j

(k−1)+t j−1

λ(v)dv

)n(i)
j,k

,

while the likelihood function for all� t
c � complete cycles is

Lcomp = e−� t
c � ∫ c

0 λ(v)dv
c∏

k=1

J∏
j=1

(∫ (k−1)+t j

(k−1)+t j−1

λ(v)dv

)� t
c �∑

i=1
n(i)

j,k

. (22)

Finally, the contribution to the likelihood from the last incomplete cycle is composed of
the contributions from complete years in the last cycle, the complete months in the last
incomplete year and the last incomplete month. For simplicity, settingτc = �t − � t

c �c� to
be the number of years in the last incomplete cycle, we have

L incomp=
τc∏

k=1


e− ∫ k

k−1 λ(v)dv
J∏

j=1

(∫ (k−1)+t j

(k−1)+t j−1

λ(v)dv

)n
(� t

c �+1)

j,k




× e
− ∫ � t

c �c+τc+m1
� t

c �c+τc
λ(v)dv

J ∗∏
j=1


e

− ∫ τc+t j
τc+t j−1

λ(v)dv

(∫ τc+t j

τc+t j−1

λ(v)dv

)n
(� t

c �+1)

j,τc+1
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× e
− ∫ t

� t
c �c+τc+tJ∗ λ(v)dv

(∫ t−� t
c �c

τc+tJ∗
λ(v)dv

)n
(� t

c �+1)

J∗+1,τc+1

, (23)

where

J ∗ =
⌊

t − ⌊ t
c

⌋
c − ⌊t − ⌊ t

c

⌋
c
⌋− m1

d

⌋
=
⌊

t − ⌊ t
c

⌋
c − τc − m1

d

⌋

is the number of months in the last incomplete year (set to 0 whenJ ∗ is a negative integer).
Note here that the last two lines reduce to

e
− ∫ � t

c �c+τc+t−�t�
� t

c �c+τc
λ(v)dv = e

− ∫ t
� t

c �c+τc
λ(v)dv

, for t − �t� ≤ m1.

Hence the full likelihood function is given by (22) and (23) as

L = Lcomp · L incomp

=e−Λ(t)
τc∏

k=1

J∏
j=1

(∫ (k−1)+t j

(k−1)+t j−1

λ(v)dv

)� t
c �+1∑
i=1

n(i)
j,k

×
c∏

k=τc+1

J∏
j=1

(∫ (k−1)+t j

(k−1)+t j−1

λ(v)dv

)� t
c �∑

i=1
n(i)

j,k

×
J ∗∏

j=1

(∫ τc+t j

τc+t j−1

λ(v)dv

)n
(� t

c �+1)

j,τc+1
(∫ t−� t

c �c

τc+tJ∗
λ(v)dv

)n
(� t

c �+1)

J∗+1,τc+1

. (24)

Substitutingλ for the double-beta periodic intensity function in (18), the integrals in
(24) can be represented as incomplete beta functions, yielding

L =e−Λ(t)
τc∏

k=1

J∏
j=1

{
λc(k − 1 + t∗1)
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×
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where thefunctionλc is given in (15).
Denote by N = ∑i, j,k n(i)

j,k the totalnumber of occurrences, for 1≤ i ≤ � t
c � + 1,

1 ≤ j ≤ J and 1≤ k ≤ c. Furtherdenote by
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Consequently, the log likelihood function is given by
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The maximum likelihood estimators forp1, q1, pc, qc, a and b in the double-beta
intensity function are obtained by maximizingl numerically.

Similarly, the maximum likelihood estimators for parameters in the model given in
Section 2.2with a generalized three-parameter beta short-term intensity function can be
derived as follows.

To simplify expressions, lett be an integer number here. Assume that the short-term
intensity function for thek-th year of a cycle is of the generalized three-parameter beta form
in (7) with parametersp(k)

1 , q(k)
1 andε(k) andλ∗

k is the peak value, wherek = 1, 2, . . . , c.
For 1≤ k ≤ τc, the log likelihood function is given by
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wheren(·)
j,k = ∑� t
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j,k is the total number of occurrences in thej -th month of thek-th

year of all complete cycles andα(k)
1 is the scale factor of thek-th year of each cycle. For
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4. Discussion and remarks

As outlined inSection 2, the illustrative data set used here comprises 167 hurricanes
that made a landfall somewhere on the Atlantic United States coastline, over the 102-year
period 1899 to 2000. These exhibit clear seasonal patterns. First, all hurricanes happened
in the months from June to November. September generated more major hurricanes than
any other month. On average, there were 1 to2 hurricane landfalls per year over the whole
period. A short-term (annual) periodic model thus seems appropriate.

First consider a NHP model with single periodicity.Fig. 3 gives the generalized
three-parameter beta intensity described in (7), that was fitted to these annual hurricane
frequencies. The parameter MLE’s here arep̂1 = 1.9198,q̂1 = 11.3050,ε̂ = 0.1349 and
λ̂∗

0 = 6.5145, obtained with the Excel solver using the method described inSection 3.

The constant intensityλ1(t) = λ̂ = 1.64, the homogeneous Poisson process MLE, is
also shown graphically inFig. 3 for comparison. Graphically, it is clear that the classical
model gives here a crude representation of hurricane frequencies (this hypothesis is tested
more formally inAppendix A).

Climatological studies suggest that the hurricane intensity does not repeat exactly
the same short-term pattern every year. Rather, it slightly varies from year to year, as
in alternating El Niño–La Niña cycles. Forexample, research on the tropical cyclones
affecting the coast of Texas during El Niño/La Niña years of 1900–1996 shows that the
highest percentage of all major hurricanes which have affected the coast of Texas occurred
when El Niño was present for at least part of the given year (see [6]). Some actuaries
also believe that El Niño/La Niña cycles in the Pacific affect tropical storm systems in the
Atlantic.
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Fig. 3. The histogram and fitted hurricane intensityλ(t) for 1-yearcycles.

Our hurricane data also exhibit some long-term periodicity, under the influence of the
global El Niño/La Niña phenomenon. The five-year cycle inFig. 4shows how the third and
fourth years of the cycle have lower occurrences of hurricanes, the fourth year’s being the
lowest. This is followed by a peak lasting for a period of nearly three years (seeAppendix A
for a formal likelihood ratio goodness-of-fit test).

This motivates our assumptions of the doubly periodic NHP process presented in
Section 2. Here the seasonality of the Atlantic hurricane repeats a similar short-term pattern
every year; meanwhile the peak intensity, affected by the El Niño phenomenon, varies over
a longer periodic cycle.

Climatologists observed that the typical El Niñocycle occurs within a 2–7 year cycle.
From a graphical analysis of the data set, we conclude that a long-term periodc = 5 years
and a short-term period of one year describe the Atlantic hurricanes reasonably well.

Fig. 4 compares the observed and expected monthly average numbers of hurricanes
over the five-year cycle for the 1899–2000 data set. A double two-parameter beta intensity
function was used and the following MLE’s were obtained:p̂1 = 3.0145,q̂1 = 2.4389,
p̂c = 1.5463,q̂c = 1.3642,â = 3.2354 andb̂ = 6.9634, wherêq1 and q̂c are obtained
from (4) and (17), respectively, whilethe estimated standard deviations for p̂1, p̂c, â
and b̂ are 0.3582, 0.7653, 0.7890 and 0.9126, respectively (see [14], Appendix A2 for
a derivation).

Climatology suggests that the levels for the long-term cycle are governed by some
underlying smoothly changing function, represented by the second beta function. The fit
for each short-term cycle seems quite good, supporting our periodic theory. But the model
does not adequately explain the short-term peaks over the long-term cycle. The El Niño/La
Niñaphenomenon is global, perhaps too complex to capture with such a simple parametric
model.
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Fig. 4. Hurricane data and five-year double-beta intensities.

Fig. 5. Hurricane data and five-year generalized double-beta intensities.

Depending on the intended use of the model, the fit can be improved by the introduction
of additional parameters. For instance when a generalized three-parameter beta intensity is
used for the short-term cycle, while the long-term beta function is kept at two parameters,
the following MLE’s are obtained:̂p1 = 1.8946,q̂1 = 12.3899,ε̂ = 0.1205,p̂c = 1.5639,
q̂c = 1.3921,â = 3.5868 andb̂ = 7.7307. It is clear fromFig. 5 that the fit is improved
(although still not perfect), at the cost of introducing only one additional parameter.
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Fig. 6. Hurricane data five-year short-term generalized beta fit.

Table 2
MLE’s of three-parameter beta intensities for the hurricane data

Year p(k)
1 q(k)

1 ε(k) λ∗
k

1 2.0087 150.0076 0.0097 9.3381
2 4.7926 3.0123 1.3227 7.2847
3 1.1459 11.9872 0.0820 5.8373
4 2.0586 121.7060 0.0150 3.9563
5 3.0769 155.4399 0.0165 8.4431

If fit is more important than simplicity of the model or smoothness, the number of
parameters can be further increased by letting the short-term cycle peak values be free.
Fig. 6 gives the histogram and fitted beta intensities, as in (11), for monthly hurricane
frequencies over a five-year long-term cycle.

Here the generalized three-parameter beta function in (7) was used as the short-term
intensity and the MLE’s, given inTable 2, were derived from (27). The fit improvement is
substantial for each short-term intensity in the five-year cycle. Yet, the model now fails to
explain how hurricane intensities vary from El Niño to La Niña years. A possible remedy
is the useof random effects on certain years of the cycle.

In conclusion, it appears that NHP risk models are more realistic in practice than
classical Poisson processes, as their intensity rate is a function of time. This is clearly
the case for hurricane landfalls.

In general, NHP processes with a periodic claim intensity can be useful in modelling risk
processes that evolve in a periodic environment. The proposed double-beta periodic claim
intensity not only generalizes the classical risk model, but also can give a more realistic
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Table 3
Chi-squared goodness-of-fit testing for the homogeneous Poisson model

Counts Observed Expected Chi squared

0 19 19.84 0.04
1 34 32.48 0.07
2 25 26.59 0.10
3 18 14.51 0.84
4+ 6 8.57 0.77

Total 102 102.00 1.81

representation than (singly) periodic models with only short-term periodic intensity
functions.

The flexibility in shape of the beta function and the explicit results obtained for the
risk process, as well as the tractability of the statistical estimation of model parameters,
should make these double-beta periodic models easy to use in practice. We hope that the
illustration of the hurricane data set serves to show that NHP risk models can also be
tractable if properly parametrized.
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Appendix A. Goodness-of-fit analysis

Figs. 1 and 3 provide graphical evidence that annual and monthly, respectively,
hurricane counts show a periodic behaviour.

More formally, we can test the alternate hypothesis of a constant hurricane intensity,
λ1(t) = λ̂ = 1.637254902, resulting in a Poisson number of hurricanes per year.Table 3
reports the Poisson expected and observed numbers of years with 0, 1, 2, 3 and 4 or more
hurricanes (the last observations were grouped to be representative).

A simple chi-squared test(X2 = 1.81 < χ2
3; 0.05 = 7.81) does not reject the

homogeneousPoisson assumption. Still, it is clear fromTable 3that the fit is poor in the
tail of the distribution.

The Poisson model with constant intensity predicts well the expected numbers of years
with lower hurricanefrequencies (e.g.n = 0, 1 or 2 hurricanes per year), but gives a poorer
prediction of the numbers of years with higher frequencies (n = 3 andn ≥ 4). The fit in
the tail is usually very important in insurance applications.

Furthermore, the homogeneous Poisson model fails to recognize the short-term seasonal
and long-term cyclical patterns that the hurricane data exhibit inFig. 5. A more appropriate
statistical indicator here is to test the significance of the additional parameters in our
double-beta periodic models.
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Fig. 7. Hurricane data autocorrelations; five-year cycle counts.

Since the classical Poisson model is a special case of the double-beta periodic model
with four parameters, inFig. 4, wecall it thereduced model. A likelihood ratio test can be
used to test the homogeneous Poisson hypothesis (reduced model), against the alternative
of our more complete four-parameter model. The test statisticr = 2(499.645−345.407) =
308.476 > χ2

3;0.05 = 7.81 is very significant, supporting the fullcomplete model
hypothesis.

Similarly, in testing for the extra parameter in our even more completefull model used
for Fig. 5, with a generalized three-parameter beta function for the short-term intensity, the
test statisticr = 2(345.407−335.936) = 18.942> χ2

1; 0.05 = 3.84 is also very significant.
This full double-beta periodic model with five parameters explains the observed periodicity
more adequately than the above reduced and complete models.

The other assumption that should be tested is that of dependence on time. The hurricane
counts observed here are not assumed to be mutually dependent (autocorrelated), but rather
dependent on the time (season) of occurrence. Once a cycle completes, every five years,
then this dependence on time gets reset. Subsequent five-year cycles are thus independent,
as in the decomposition in (13). Fig. 7 shows the absence of autocorrelations, in these
five-year cycle counts.
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Regime-Switching Periodic Models for Claim

Counts

Abstract

We study a Cox risk model that accounts for both, seasonal variations

and random fluctuations in the claims intensity. This occurs with nat-

ural phenomena that evolve in a seasonal environment and affect insurance

claims, such as hurricanes.

More precisely, we define an intensity process, governed by a periodic

function with a random peak level. The periodic intensity function follows

a deterministic pattern in each short–term period, and is illustrated by

a beta–type function. A two–state Markov chain defines the level process,

explaining the random effect due to “high” or “low risk” years. This yields a

regime–switching process, alternating between the two resulting intensities.

The properties of the corresponding claim counting process are discussed

in detail. By properly defining the Lundberg coefficient, Lundberg–type

bounds for finite time ruin probabilities are derived.

1



1 Introduction

Consider the risk process

U(t) = u + ct −

N(t)
∑

j=1

Xj , t ≥ 0 , (1)

where u is the initial value, c is the (constant) premium rate, {N(t)}t≥0 is a point

process which models the number of claims arriving within the time interval [0, t)

and Xj is the j-th claim size. When {N(t)}t≥0 is a Poisson process with (constant)

intensity λ and the claim size sequence {Xj}j≥1 are i.i.d. and independent of N ,

then (1) is known as the classical (homogeneous Poisson) risk model, which has

been investigated extensively in the actuarial literature.

The classical risk model is not realistic in some practical situations. Two main

modifications are made here. First, a non–homogeneous Poisson (NHP) process

is used to model “size fluctuations” in the claim intensity of a risk subject to

seasonality. Then, a Cox process, also called doubly stochastic Poisson process

and a natural extension of the NHP process, is used to characterize the underlying

“risk fluctuations” in the claims intensity [see Grandell (1991)].

The risk theory literature gives only a few results when the claim counting process

is a NHP process. Dassios and Embrechts (1989) defines a risk model with periodic

claim intensity and consider the corresponding ruin problems using a martingale

2



approach. Similar models are also considered by Asmussen and Rolski (1994)

and by Rolski et al. (1999). Two–sided bounds and asymptotic formulae for ruin

probabilities are derived by using an average arrival rate risk model. Berg and

Haberman (1994) uses a non–homogeneous Markov birth process, of which the

NHP process is a special case, to predict trends in life insurance claim occurrences.

Dimitrov et al. (2000) exploits some properties in a NHP risk model with a (single)

periodic claim intensity. Morales (2004) chooses a Gaussian shape for the periodic

claim intensity function. By contrast, Garrido and Lu (2002) considers a more

general double periodic intensity rate. Possible forms of intensity functions, like

the double–beta and the sine–beta, are proposed.

An early reference to Cox risk models is Ammeter (1948). In his model, the inten-

sity λk over time intervals [(k− 1)Λ, kΛ) of (fixed) length Λ, for k ∈ N
+, forms an

i.i.d. sequence {λk}k≥0. This model is generalized by Björk and Grandell (1988),

who consider the intensity as λ(t) = Li if Σi−1 ≤ t < Σi, where Σi = σ1 + · · ·+σi,

with Σ0 = 0 and (Li, σi) a sequence of i.i.d. random vectors. Ammeter’s model is

revisited by Grandell (1995) and more properties of the model are discovered.

Asmussen (1989) proposes a Cox risk model, called a Markov–modulated Poisson

process, whose intensity process {λ(t)}t≥0 is given by λ(t) = λJ(t). Here the

process {J(t)}t≥0 models the random environment of an insurance business and is

3



assumed to be an irreducible continuous time Markov chain, with finite state space

{1, 2, . . . , l}. Furthermore, a Cox risk process with a piecewise constant intensity

is considered by Schmidli (1996), where the sequence {Li}i≥1 of successive levels

of the intensity forms a Markov chain.

Ruin probabilities have been studied in these Cox models with a piecewise con-

stant intensity. Lundberg inequalities hold, provided some assumptions are ful-

filled. These may not be practical due to the difficulty in estimating the Lundberg

coefficient and evaluating some constants within the inequalities. Other papers

regarding to this topic are Embrechts et al. (1993) and Schmidli (1997).

There are very few results in the risk theory literature regarding Cox processes

with other than piecewise constant intensities. Recently, Schmidli (2003) consi-

dered a NHP model with doubly stochastic occurrences for the PCS catastrophes

index, based on individual indices for PCS options, where the intensity is of the

form Λλ(t), with Λ is stochastic and λ(t) is a given function.

Some natural phenomena evolve in a seasonal environment subject to random

fluctuations which, in turn, affect insurance claims. For example, tropical storms

and hurricanes periodically affect the coastal US states along the Atlantic and

the Gulf of Mexico. The claim intensity then forms a specific pattern for each

year which can be modeled by a periodic function. Speculation exists regarding

4



the significance and potential effects of the El Niño phenomenon on hurricane

frequency and the strength attained by tropical cyclones during alternating El

Niño/La Niña years. These are random effects that, in some sense, affect the risk

propensity or the peak level of the seasonal intensity, which can be modeled by a

stochastic process.

In this paper we propose a Cox model that accounts for both, the seasonal va-

riations and the random fluctuations in the claims intensity. Beard et al. (1984)

and Daykin et al. (1994) suggest an intensity process λ as a composition of some

factors, such as the normal trend, deviations from it and the short–term variations

in risk propensity. Here we simply consider an intensity process with the following

structure

λ(t) = λS(t)q(t) , t ≥ 0 , (2)

where λS(t) is the short–term intensity function and q(t) is a stochastic (level)

process. The periodicity of the short–term intensity function is also considered,

which takes into account those insurance claims affected by a periodic environ-

ment, like hurricanes or seasonal storms. A Markov chain with two states, cor-

responding to two different (high and low) levels, is chosen for the level process,

yielding a so called regime–switching process. Under this intensity process, pro-

perties of the claim counting process and its corresponding risk process are studied
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in detail. By properly choosing the Lundberg coefficient, Lundberg–type upper

bounds for finite time ruin probabilities are derived.

The paper is organized as follows. The model is defined in Section 2. Section 3

discusses the properties of the claim counting process. This gives a precise descrip-

tion of the model characteristics, such as the probabilities of recording k claims

during the time interval [0, t), for t ≥ 0 and k ∈ N, and the expectation of the

integrated intensities in (2). In Section 4 we derive Lundberg–type upper bounds

for finite time ruin probabilities and illustrate the results by some examples.

2 A Cox model with a regime–switching

periodic intensity

Consider an intensity process {λ(t)}t≥0 governed by a deterministic pattern in

each short–term period, say a year, and a random effect on its peak level, that

is the amplitude of the pattern. This fixed intensity pattern can be seen as the

short-term periodicity, like in the NHP process. Assume we have two different

risk levels; λ0 which represents the risk under “low season” conditions, while the

other, λ1, represents the peak intensity under “high risk” years. In practice, such

conditions can be slippery roads, foggy days, stormy weather, years affected by
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the El Niño phenomenon and so on.

Furthermore, assume that the intensity level modulates by an irreducible discrete

time Markov process, κ = {κn}n≥0, with finite state space {0, 1} and the transition

probability matrix P , given by

P =









1 − p01 p01

p10 1 − p10









. (3)

Without loss of generality, we assume that the short–term period is 1. Let β be a

function defined on [0, 1], such that β(t∗) = 1, where t∗ ∈ [0, 1] is the mode of the

function. Consider the intensity process λ, given by

λ(t) = λκbtc
β(t − btc) , t ≥ 0 . (4)

This gives λ(n + t∗) = λκn
β(t∗) = λκn

for n ∈ N, that is, the peak of the function

λ(t) within the (n + 1)-th year [i.e. t ∈ [n, n + 1)] is λκn
, which changes according

to the Markov chain κ. As such, we call λκn
the intensity level for year n + 1.

In the sequel, we illustrate the annual common intensity pattern as a beta–type

function with parameters p ≥ 1 and q ≥ 1, given by

β(t) = α∗ tp−1 (1 − t)q−1 , 0 ≤ t ≤ 1 , (5)

where α∗ is a scale factor, given by

α∗ =
1

(t∗)p−1 (1 − t∗)q−1
and t∗ =

p − 1

p + q − 2
(6)
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is the mode of β(t), t ∈ [0, 1]. As such, note that at the mode β(t∗) = 1 is the

peak level [see Figure 1]. Also denote the beta function in the usual way

B(p, q) =

∫ 1

0

vp−1(1 − v)q−1dv =
Γ(p)Γ(q)

Γ(p + q)
, p, q ≥ 1,

and the incomplete beta function at p, q ≥ 1 as

B(p, q; t) =

∫ t

0

vp−1 (1 − v)q−1 dv , t ∈ (0, 1) ,

with B(p, q; t) = 0 if t ≤ 0, while B(p, q; t) = btcB(p, q) + B(p, q; t−btc), if t ≥ 1.

Figure 1: β(t) and one realization of intensity process λ.

Figure 1 illustrates function β(t), when p = 3 and q = 2, as well as a realization

of the intensity process λ, when p = 3, q = 2, λ0 = 0.75, λ1 = 1.2, p01 = 0.25 and

p10 = 0.5.

Consider a special Cox process, the claim counting process {N(t)}t≥0 with an

8



intensity process as in (4). Due to the periodicity of the function β(t − btc), for

t ≥ 0, and the transitions, from year to year, between levels λ0 and λ1, we call this

risk model a regime–switching periodic non–homogeneous Poisson (NHP) process.

Let {Ni(t)}t≥0 for i = 0, 1, (with Ni(0) = 0) denote a claim counting NHP process

with intensity function λi β(t − btc) over the time interval [0, t). That is Ni(t)

is Poisson distributed with mean λi

∫ t

0
β(v − bvc) dv = λi α

∗ B(p, q; t). Then the

process {N(t)}t≥0 can be represented as

N(t) =
∑

i=0,1

Yi(btc) Ni(1) + Nκbtc
(t) − Nκbtc

(btc) , t ≥ 0 , (7)

where Yi(btc) =
∑btc−1

n=0 I(κn = i) denotes the number of years in [0, btc) that κ

spends in state i, for i = 0, 1. This implies that, the conditional expected number

of claims in the time interval [0, t), given the environment, is:

E
[

N(t) | κ0, κ1, . . . , κbtc
]

=

btc−1
∑

n=0

∫ 1

0

λκn
β(v) dv + λκbtc

∫ t−btc

0

β(v) dv

= L
(

btc
)

α∗ B(p, q) + λκbtc
α∗ B(p, q; t − btc) , t ≥ 0 ,

where

L
(

btc
)

= Y0(btc) λ0 + Y1(btc) λ1 , t ≥ 0 , (8)

denotes the sum of λ0 and λ1 values in [0, btc). Hence, we have

E[N(t)] ≤ max{λ0, λ1}α∗ B(p, q; t).
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The corresponding compound NHP process {S(t)}t≥0 is given by

S(t) =

N(t)
∑

j=1

Xj , t ≥ 0 , (9)

where the Xj’s are the claim sizes with distribution function FX , expected claim

size µ =
∫ ∞
0

v dFX(v) and moment generating function m̂X(s) =
∫ ∞
0

esv dFX(v),

for some s > 0. These claim severities are assumed independent of the Markov

environment process κ and hence of the claim counting process {N(t)}t≥0. As in

(7) process {S(t)}t≥0 can also be represented as

S(t) =
∑

i=0,1

Yi(btc) Si(1) + Sκbtc
(t) − Sκbtc

(btc) , t ≥ 0 ,

where Si(t) =
∑Ni(t)

j=1 Xj.

Now consider the continuous–time surplus process {U(t)}t≥0, given by

U(t) = u + ct − S(t) , t ≥ 0 , (10)

where u is the initial capital value and c is the constant premium rate. The

aggregate claim process {S(t)}t≥0 is given in (9) and the claim counting process

{N(t)}t≥0 is the regime–switching periodic NHP process in (7).

Since the Markov environment process κ is assumed irreducible, it has a stationary

initial distribution, denoted by π = (π0, π1). Then by the law of large numbers

for irreducible Markov processes, we have:

lim
t→∞

U(t)

t
= c − µ

∑

i=0,1

πi λi α
∗ B(p, q) , (11)
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[see Rolski et al. (1999, Chapter 12)].

(11) implies that ruin occurs almost surely if the process has a negative drift, that

is c ≤ µ
∑

i=0,1 πi λi α
∗ B(p, q). Therefore we assume that the net profit condition

c > µ
∑

i=0,1

πi λi α
∗B(p, q) , (12)

holds in the sequel.

3 Properties of the regime–switching periodic

process

For the regime–switching periodic NHP process defined above, the random mea-

sure Λ in this Cox process, given the realization of the environment process κ up

to time btc, is:

Λ(t) =

∫ t

0

λ(v) dv = L
(

btc
)

α∗ B(p, q) + λκbtc
α∗ B(p, q; t − btc) , t ≥ 0 ,

(13)

where L
(

btc
)

is given in (8). Then the conditional probability that the number

of claims is k in the time interval [0, t) is obtained as:

P{N(t) = k | κ0, κ1, . . . , κbtc} =
[Λ(t)]k

k!
e−Λ(t) , k ∈ N

+ ,
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where Λ(t) is given in (13).

In order to calculate P{N(t) = k}, we need to know how many times λ0 appears

in the sequence {λκ0, λκ1, . . . , λκbtc
} (then the number of λ1 values is fixed). This

is equivalent to finding how many times 0 (say, “failure”) or 1 (“success”) appears

in the corresponding sequence {κ0, κ1, . . . , κbtc}. To do this, we denote Yi(n) to be

the number of times that successive n-length sequences of the time–homogeneous

{0, 1}-valued Markov process κ are in state i, for i = 0, 1.

Many papers discuss formulas or recursions for the distribution of success runs of

several lengths in a two–state Markov chain [for example, see Han and Aki (1998)].

From these, it is not difficult to derive the distribution of the number of successes,

Y1(n), which takes values in {0, 1, . . . , n} and can be obtained as follows.

Let Ei(n, y) denote the conditional probability of y successes in a (n + 1)-length

sequence, given that the sequence starts from state i, for i = 0, 1. That is,

E0(n, y) = P{Y1(n) = y} and E1(n, y) = P{Y1(n) = y − 1}. For convenience,

define Ei(n, y) = 0 for all y < 0, n ≥ 0 and i = 0, 1. We have the following
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recursive formulas for probabilities Ei(n, y).

Ei(0, 0) = 1 , for i = 0, 1,

E0(n, y) = (1 − p01) E0(n − 1, y) +

n−1
∑

m=1

p01 (1 − p10)
m−1p10 E0(n − m − 1, y − m)

+p01 (1 − p10)
n−1 E1(0, y − n) , for 0 ≤ y ≤ n, n ≥ 1 , (14)

E1(n, y) = p10 E0(n − 1, y) +
n−1
∑

m=1

(1 − p10)
mp10 E0(n − m − 1, y − m)

+(1 − p10)
n E1(0, y − n) , for 0 ≤ y ≤ n, n ≥ 1.

Denote by Pn(y), the probability of Y1(n) = y (implying that Y0(n) must be n−y)

in a n-length sequence of the {0, 1}-valued irreducible Markov chain κ. Then

assuming that this n-length sequence starts κ0, the law of the total probabilities

gives:

Pn(y) =
∑

i=0,1

P{Y1(n) = y | κ0 = i}P{κ0 = i}

= π0 P{Y1(n − 1) = y | κ0 = 0} + π1 P{Y1(n − 1) = y − 1 | κ0 = 1}

= π0 E0(n − 1, y) + π1 E1(n − 1, y − 1)

=
∑

i=0,1

πi Ei(n − 1, y − i) , for 0 ≤ y ≤ n, n ∈ N , (15)

where Ei(n − 1, y − i) can be recursively calculated from (14) and (π0, π1) is the

initial distribution of Markov chain κ.

For example, in a 3-length sequence, the probability that there are no successes
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is given by:

P3(0) = π0 E0(2, 0) = π0 (1− p01) E0(1, 0) = π0 (1− p01)
2 E0(0, 0) = π0 (1− p01)

2 ,

since first it has to start from state 0 and then stays at 0 (failure) for the next

two steps. By contrast, the probability that there are 1 success and 2 failures is

P3(1) = π0 E0(2, 1) + π1 E1(2, 0)

= π0

[

(1 − p01) E0(1, 1) + p01 p10 E0(0, 0)
]

+ π1 p10 E0(1, 0)

= π0

[

(1 − p01) p01 E1(0, 0) + p01 p10

]

+ π1 p10 (1 − p01) E0(0, 0)

= π0

[

(1 − p01) p01 + p01 p10

]

+ π1 p10 (1 − p01) ,

since if the sequence starts at 0, it must go to 1 once in the next two steps.

But if the sequence starts at 1, it has to stay at 0 for the next two steps, and

so on. Similarly, we have P3(2) = π0 p01 (1 − p10) + π1 p10 [p01 + (1 − p10)] and

P3(3) = π1(1 − p10)
2.

We introduce the following notation for abbreviation. Denote by Λn(y) the ran-

dom measure under a realization of y periods at level λ1 (and hence n− y periods

at λ0), in the sequence {λκ0, λκ1, . . . , λκn−1}. That is

Λn(y) =
[

(n − y)λ0 + yλ1

]

α∗ B(p, q) , 0 ≤ y ≤ n, n ∈ N . (16)

Then we have the following theorem for the probabilities P{N(t) = k}.
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Theorem 1 Let κ = {κn}n≥0 be a {0, 1}-valued irreducible Markov chain with

transition probabilities given by (3) and initial distribution (π0, π1). For the coun-

ting process {N(t)}t≥0, given by (7), the probabilities that there be k claim oc-

currences during the time interval [0, t), for t ≥ 0 and k ∈ N, is given by

P{N(t) = k} =

btc
∑

y=0

Pbtc(y)

{

∑

i=0,1

(π0 p0i + π1 p1i) e−
[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

[

Λbtc(y) + λi α
∗ B(p, q; t − btc)

]k

k!

}

, (17)

where Pbtc(y) and Λbtc(y) are obtained from (15) and (16), respectively.

Proof. See the Appendix. 2

Note here that (17) can be re-written as

P{N(t) = k} = E
[

P{N(t) = k
∣

∣ κ0, κ1, . . . , κbtc}
]

= E

[

Λ(t)k

k!
e−Λ(t)

]

,

where Λ(t) is given by (13). It means that this regime–switching periodic NHP

process can also be interpreted as a mixed Poisson process.

The random measure Λ(t) of this special Cox process is given by (13). Taking

expectations in (13) directly gives

E[Λ(t)] = E

[

L(btc) α∗ B(p, q) + λκbtc
α∗ B(p, q; t − btc)

]

= α∗ B(p, q) E
[

L(btc)
]

+ α∗ B(p, q; t − btc) E
[

λκbtc

]

,
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then since E[Y1(btc)] =
∑btc

y=0 y Pbtc(y) and E
[

λκbtc

]

= λ0

[

π0 (1 − p01) + π1 p10

]

+

λ1

[

π0 p01 + π1 (1 − p10)
]

, it follows that

E
[

Λ(t)
]

= α∗ B(p, q)

btc
∑

y=0

Pbtc(y)
[

(btc − y) λ0 + y λ1

]

+α∗ B(p, q; t − btc)
∑

i=0,1

λi (π0 p0i + π1 p1i) , t ≥ 0 . (18)

It is not difficult to see that (18) is equivalent to

E[Λ(t)] =

btc
∑

y=0

Pbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i)
[

Λbtc(y) + λi α
∗ B(p, q; t − btc)

]

,

then when t ≥ 0 and s < aΛ, the moment generating function of Λ(t), m̂Λ(t)(s) =

E[exp{sΛ(t)}], is given by

m̂Λ(t)(s) =

btc
∑

y=0

Pbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i) es

[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

, (19)

where aΛ ∈ R
+ is such that lims↑aΛ

m̂Λ(t)(s) = +∞, while Pbtc(y) can be obtained

from (15).

It is interesting to see that (19) can be re-written as

m̂Λ(t)(s) =

btc
∑

y=0

Pbtc(y) esΛbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i) esλi α∗ B(p,q;t−btc)

= m̂Λ(btc)(s)m̂Λ(t−btc)(s) , s < aΛ ,

showing that Λ(t) = Λ(btc) + Λ(t − btc) and that these are independent.

Theorem 1 and the above results on Λ(t) allow for the derivation of the moments

of N(t). For instance, applying Fubini’s Theorem and simple manipulations to
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(17), gives the probability generating function ĝN(t)(s) = E[sN(t)]:

ĝN(t)(s) =

btc
∑

y=0

Pbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i) e(s−1) [Λbtc(y)+λi α∗ B(p,q;t−btc)]

= E[e(s−1) Λ(t)] = m̂Λ(s − 1) , | s |< 1 .

Furthermore, taking the r-th derivative of ĝN(t)(s) with respect to s ∈ (0, 1),

ĝ
(r)
N(t)(s), and its limit as s ↑ 1, yields the following successive factorial moments

of N(t) (that these be finite or not):

E

[

N(t)[N(t) − 1] · · · [N(t) − r + 1]
]

= ĝ
(r)
N(t)(1) = lim

s↑1
ĝ

(r)
N(t)(s)

= lim
s↑1

E[Λ(t)r e(s−1) Λ(t)] = E[Λ(t)r] .

In particular, we have that:

E
[

N(t)
]

= E
[

Λ(t)
]

and V
[

N(t)
]

= V
[

Λ(t)
]

+ E
[

Λ(t)
]

, (20)

which imply that the index of dispersion of N(t) is IN(t) = V[N(t)]
E[N(t)]

= 1 + IΛ(t) > 1,

showing that N(t) is overdispersed, by contrast to the classical Poisson process.

4 A Lundberg upper bound for finite time ruin

probabilities

This last section discusses the ruin problem for our special Cox process. The risk

(income) process, over the time interval [0, t), with initial value R(0) = 0 and a
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constant premium rate c, is given as

R(t) = ct − S(t) = ct −

N(t)
∑

j=1

Xj , t ≥ 0 , (21)

where the claim counting process {N(t)}t≥0 is the regime–switching periodic NHP

process driven by our {0, 1}-valued Markov chain κ and S(t) is as in (9). Further

assume that the moment generating function m̂X(s) =
∫ ∞
0

esx dFX(x) is twice

differentiable on an interval [0, aX), where aX > 0 and lims↑aX
m̂X(s) = +∞.

Denote the Laplace–Stieltjes transform of R(t) by l(r; t) = E[e−r R(t)]. Assuming

it exists, it is given by

l(r; t) = eΛ(t)
[

m̂X(r)−1
]

−r ct , r > aR(t) , t ≥ 0 . (22)

Similarly, for i = 0, 1, let

li(r; t) = E
[

e−r Ri(t)
]

= E
[

e−r (ct−
PNi(t)

j=1 Xj)
]

= e
λi α∗ B(p,q;t)

[

m̂X(r)−1
]

−r ct
, r > aRi(t) , t ≥ 0 . (23)

Let the time to ruin be defined in the usual way:

Tu = inf{t ≥ 0 | u + R(t) < 0} , u ≥ 0 .

The ultimate ruin probability Ψ(u) is then given by:

Ψ(u) = P{Tu < ∞} , u ≥ 0 .

18



Using the martingale approach to Cox models discussed in Grandell (1991) we

can prove the following result.

Theorem 2 The following Lundberg–type upper bound holds for the finite time

ruin probability in model (21):

P
{

Tu ≤ t0
}

≤ e−ru
E

[

sup
0≤t≤to

l(r; t)

]

, 0 ≤ t0 < ∞ . (24)

A tighter upper bound can also be obtained for 0 ≤ t0 < ∞, as:

P
{

Tu ≤ t0
}

≤ e−ru
E

[

sup
0≤t≤to

l(r; t)

]

sup
y≥0

{

ery F̄X(y)
∫ ∞

y
erx dFX(x)

}

, (25)

where F̄X = 1 − FX is the tail of the distribution function of X.

Proof. For details see the Appendix. 2

The upper bound given in (25) is difficult to use in practice. To derive a corres-

ponding useful bound for our regime–switching periodic NHP model, first define

the average risk level, given by

λ̄ = π0λ0 + π1λ1 , (26)

and consider, for r ≥ 0, the equation

θ(r) = λ̄ α∗ B(p, q)
[

m̂X(r) − 1
]

− r c = 0 . (27)
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The solution, γ > 0, to (27) satisfies:

λ̄ α∗ B(p, q)
[

m̂X(γ) − 1
]

= γc . (28)

Here γ is an adjustment coefficient for the average risk level λ̄ in (26), where λ1,

the peak intensity under “high risk” years, is assumed larger than that in the “low

season” (i.e. λ0 < λ1). It follows from (28) that

λi α
∗ B(p, q)

[

m̂X(γ) − 1
]

=
λi

λ̄
γ c , i = 0, 1 . (29)

The existence and unicity of γ in [0, aX) is guaranteed because θ(0) = 0 and

θ′(0) = λ̄ α∗ B(p, q) µ − c < 0, provided that the net profit condition (12) holds,

and hence the convexity of θ(r) ensures that θ′(γ) > 0.

Assume that t0 is an integer. Then with probabilities Pt0(y), given by (15), Λ(t0)

takes the following realizations:

Λt0(y) =
[

(t0 − y) λ0 + y λ1

]

α∗ B(p, q) , 0 ≤ y ≤ t0 , t0 ∈ N .

When 0 ≤ t ≤ t0, we have two possibilities for Λ(t), depending on the value of

λκbtc
. One is

Λ(t) =
[

(btc − z) λ0 + z λ1

]

α∗ B(p, q) + λ0 α∗ B(p, q; t − btc) , 0 ≤ t ≤ t0 ,

(30)

where 0 ≤ z ≤ min{btc, y} and btc−z+1 ≤ t0−y, or equivalently, z ∈ C(t+1, y) =
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[

max{0, btc + 1 − (t0 − y)}, min{btc, y}
]

. While the other is

Λ(t) =
[

(btc − z) λ0 + z λ1

]

α∗ B(p, q) + λ1 α∗ B(p, q; t − btc) , 0 ≤ t ≤ t0 ,

(31)

where similarly, 0 ≤ z ≤ min{btc, y − 1} and btc − z ≤ t0 − y, or equivalently,

z ∈ C(t, y − 1) =
[

max{0, btc − (t0 − y)}, min{btc, y − 1}
]

.

When Λ(t) is given by (30), then (28) and (29) imply that:

Λ(t)
[

m̂X(γ) − 1
]

− γ ct = (btc − z)
[

λ0 α∗ B(p, q) (m̂X(γ) − 1) − γ c
]

+z
[

λ1 α∗ B(p, q) (m̂X(γ) − 1) − γ c
]

+λ0 α∗ B(p, q; t − btc) (m̂X(γ) − 1) − γ c(t − btc)

= −btc
( λ̄ − λ0

λ̄

)

γ c + z
(λ1 − λ0

λ̄

)

γ c

+λ0 α∗ B(p, q; t − btc)
[

m̂X(γ) − 1
]

− γ c(t − btc).

In turn

sup
0≤t≤t0

l(γ; t) = sup
0≤t≤t0

e
Λ(t)

[

m̂X (γ)−1
]

−γ ct

≤ sup
0≤t≤t0

z∈C(t+1,y)

e
z

(

λ1−λ0
λ̄

)

γ c+λ0 α∗ B(p,q;t−btc)
[

m̂X (γ)−1
]

−γ c(t−btc)

= max
0≤t≤t0

z∈C(t+1,y)

ez

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l0(γ; v)

≤ ey

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l0(γ; v) . (32)
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Similarly, when Λ(t) is given by (31), then

sup
0≤t≤t0

l(γ; t) ≤ e(y−1)
(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l1(γ; v) ≤ ey

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l1(γ; v) ,

which has the same form as (32). Taking expectations gives

E

[

sup
0≤t≤to

l(r; t)

]

=
t0

∑

y=0

Pt0(y) ey

(

λ1−λ0
λ̄

)

γ c .

Finally, setting r = γ, gives a Lundberg–type upper bound for the finite time ruin

probability in (25), for t0 ∈ N, that is:

P
{

Tu ≤ t0
}

≤ e−γ u

[

t0
∑

y=0

Pt0(y) ey

(

λ1−λ0
λ̄

)

γ c

]

max
0≤v<1
i=0,1

li(γ; v) sup
y≥0

{

ery F̄X(y)
∫ ∞

y
erx dFX(x)

}

,

(33)

where γ satisfies (28) and Pt0(y) is given in (15).

Obviously, the simpler bound for P{Tu ≤ t0} given by (24) can also be derived

here:

P
{

Tu ≤ t0
}

≤ e−γ u

[

t0
∑

y=0

Pt0(y) e
y

(

λ1−λ0
λ̄

)

γ c

]

max
0≤v<1
i=0,1

li(γ; v) , (34)

but (33) is tighter than (34), as shown in the following examples.

Example 1 Consider claim sizes that are exponentially distributed with mean

µ. Their moment generating function m̂X(s) = 1
1−µs

, for s < aX = 1
µ
. The

adjustment coefficient for parameter λ0, is then given by

γ =
c − λ0 α∗ B(p, q) µ

c µ
=

1

µ
−

λ̄ α∗B(p, q)

c
, (35)
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which is the positive solution to equation (28). The corresponding li(γ; v), given

in (23), takes the form

li(γ; v) = e

(

λi
λ̄

B(p,q;v)
B(p,q)

−v

)

γ c
, 0 ≤ v < 1 , i = 0, 1 . (36)

Figure 2: Upper bounds for exponential claims vs u (t0 = 20) and t0 (u = 10).

Figure 2 illustrates the upper bounds in this exponential case, as a function of u

(left graph), when t0 = 20, and as a function of t0 (right graph), when u = 10.

The other parameters are chosen to be λ0 = 1, λ1 = 1.2, p = 3, q = 2, p01 = 0.25,

p10 = 0.5, c = 1.5, µ = 1.5 and γ = 0.267, which is obtained from (35). Clearly,

the upper bounds (a), given by (33) are sharper than those in (b), given by (34).

Example 2 Consider the case of inverse Gaussian distributed claims, with mean
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µ, variance µ β and density function

fX(x) =
µ

√

2πβx3
e
− (x−µ)2

2βx , x > 0 .

Their moment generating function m̂X(s) = e
µ
β

(1−
√

1−2βs) exists for s < 1
2β

. The

adjustment coefficient γ with respect to parameter λ̄ is the positive solution to

the equation

λ̄ α∗ B(p, q)

[

e
µ
β

(

1−
√

1−2β γ

)

− 1

]

= γ c , (37)

and li(v; γ), for i = 0, 1, is of the same form as in (36).

Figure 3 illustrates the upper bounds in this inverse Gaussian case, again as a

function of u (left graph), when t0 = 20, and as a function of t0 (right graph),

when u = 10. The other parameters are chosen as for Figure 2 and β = 8
3
, which

gives a variance of 4. Here γ = 0.155 is obtained from (37). Again the upper

bounds in (a), given by (33) are sharper than those in (b), given by (34).

Conclusions

Regime–switching periodic NHP processes can be useful in modeling risk processes

under periodic and random environments. A beta–type short–term intensity func-

tion is proposed with a two–state Markov process to model the peak level in the

24



Figure 3: Upper bounds for inverse Gaussian claims vs t0 (u = 10) and u (t0 = 20).

intensity of this Cox risk process. This generalizes the periodic NHP model. It can

also provide more realistic descriptions than Cox models with piecewise constant

intensities.

The flexible shape of the beta function and the explicit results obtained for the

Cox risk process should make these regime–switching period NHP models more

practical than Cox processes with piecewise constant intensities, or than the usual

NHP process. However, this work can be extended to other reasonable short–term

intensity functions or regime–switching level processes with multi–state spaces.

Furthermore, statistical methods to estimate from real data set the beta parame-

ters and level parameters of the model are readily available and shall be illustrated

in subsequent work.
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Appendix

Proof of Theorem 1: By the law of the total probabilities, it is easily seen that

P{N(t) = k} = P{N(btc) + [N(t) − N(btc)] = k}

=
k

∑

l=0

P{N(btc) = l}P{N(t) − N(btc) = k − l} .

Furthermore, since

P{N(btc) = l} =

btc
∑

y=0

P{N(btc) = l
∣

∣ Y1btc) = y}P{Y1(btc) = y}

=

btc
∑

y=0

[

Λbtc(y)
]l

l!
e−Λbtc(y) Pbtc(y) ,

and

P{N(t) − N(btc) = k − l}

=
∑

i=0,1

P{N(t) − N(btc) = k − l
∣

∣ κbtc−1 = i}P{κbtc−1 = i}

=
∑

i=0,1

[

∑

j=0,1

P{N(t) − N(btc) = k − l
∣

∣ κbtc−1 = i, κbtc = j}

P{κbtc = j
∣

∣κbtc−1 = i}
]

πi

=
∑

i=0,1

(π0 p0i + π1 p1i)

[

λi α
∗ B(p, q; t − btc)

]k−l

(k − l)!
e−λi α∗ B(p,q;t−btc) ,
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we now can write

P{N(t) = k} =

btc
∑

y=0

Pbtc(y)

{

∑

i=0,1

(π0 p0i + π1 p1i) e
−
[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

k
∑

l=0

[

Λbtc(y)
]l

l! (k − l)!

[

λi α
∗ B(p, q; t − btc)

]k−l

}

=

btc
∑

y=0

Pbtc(y)

{

∑

i=0,1

(π0 p0i + π1 p1i) e
−
[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

[

Λbtc(y) + λi α
∗ B(p, q; t − btc)

]k

k!

}

,

which completes the proof. 2

Proof of Theorem 2: Consider the martingale approach to Cox models discussed

in Grandell (1991). Let F be a suitable filtration, M be a positive F-martingale

(or a positive F-supermartingale) and T be an F-stopping time. Choose t0 < ∞

and consider t0 ∧ T , a bounded F-stopping time.

By the optional stopping theorem, we have that

M(0) ≥ E
F0 [M(t0 ∧ T )] ≥ E

F0 [M(T ) | t ≤ t0] P
F0{T ≤ t0} ,

and therefore

PF0{T ≤ t0} ≤
M(0)

EF0 [M(T ) | T ≤ t0]
, t0 < ∞ .

Let the risk process R be adapted to F, that is Ft ⊇ FR
t for all t ≥ 0. Then the

ultimate ruin probability Ψ(u) is seen to be:

Ψ(u) = P{Tu < ∞} = E
[

PF0{Tu < ∞}
]

, u ≥ 0 .
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Now consider N to be a Cox process with intensity process {λ(t)}t≥0 and random

intensity measure Λ, given by Λ(t) =
∫ t

0
λ(v) dv. A suitable filtration F is defined

as Ft = FΛ
∞∨FR

t and thus F0 = FΛ
∞. Consider the following choice of process M :

M(t) =
e−r [u+R(t)]

l(r; t)
=

e−r [u+R(t)]

eΛ(t) [m̂X(r)−1]−r ct
, t ≥ 0 ,

where R(t) is given in (21).

It can be shown that M is an F-martingale where the filtration is given by Ft =

FΛ
∞ ∨ FR

t . A lower bound is obtained when 0 ≤ t0 < ∞ as

E
F0

[

M(Tu)
∣

∣Tu ≤ t0
]

≥ E
F0

[

e−Λ(Tu) [m̂X(r)−1]+r cTu
∣

∣ Tu ≤ t0
]

≥ inf
0≤t≤to

e−Λ(t) [m̂X(r)−1]+r ct . (38)

More precisely,

E
F0

[

M(Tu)
∣

∣Tu ≤ t0
]

= E
F0

[

e−r [u+R(Tu)] e−Λ(Tu) [m̂X(r)−1]+r cTu
∣

∣ Tu ≤ t0
]

≥ inf
0≤t≤to

{

e−Λ(t) [m̂X(r)−1]+r ct
}

E
F0

[

e−r [u+R(Tu)]
∣

∣ Tu ≤ t0
]

≥ inf
0≤t≤to

{

e−Λ(t) [m̂X(r)−1]+r ct
}

inf
y≥0

{

1 − FX(y)
∫ ∞

y
e−r(y−x) dFX(x)

}

. (39)

Then we get, from (38), that

PF0
{

Tu ≤ t0
}

≤
M(0)

EF0
[

M(Tu)
∣

∣Tu ≤ t0
] ≤ e−ru sup

0≤t≤to

l(r; t) . (40)

Taking expectations proves (24). Using (39) in (40) yields (25). 2
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