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Abstract

Non-homogeneous Poisson processes with periodic claim intensity rate have been proposed as
claim counts in risk theory. Here a doubly periodic Poisson model with short- and long-term trends
is studied. Beta-type intensityifictions are presented as illusioas. The likelihood function and
the maximum likelihood estimates of the model parameters are derived.

Doubly periodic Bisson models are appropriate when the seasonality does not repeat exactly
the same short-term pattern every year, but has a peak intensity that varies over a longer period.
This refects periodic environments like those forming hurricanes, in alternating El Nifio/La Nifia
years. An application of the model to the data deAtantic hurricanes affecting the United States
(1899-2000) is discussed in detail.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Non-homogeneous Poisson (NHP) processes are considered a more realistic alternative
than the classical Poisson process for modelling the frequency of claims in risk theory.
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The NHP time-dependent intensity function is appropriate for describing the fluctuations
of risks, subject to seasonality in their claims intensity.

Beard et al. 3] and Dgkin et al. [8] claim that the risk process is often subject to
continual changes in risk propensity. Thisrisd for both the long-term, systematic, slowly
changing trends as well as the short-term random variations that affect the number of
claims. The model to be employed must then suitably define a time-dependent function
or a stochastic proce$s(t) }t>o, instead of the constant Poisson paramater

Berg and thberman 4] use a non-homogeneous Markov birth process, of which the
NHP is a special case, to predict trends such as the time to the next claim or the expected
total number of claims in a year iife insurance claim occurrences.

In practice, natural phenomena evolving in a periodic environment, or under seasonal
conditions, affect insurance claims. For example, weather factors are known to affect car
or fire insurance claims, while seasonal snow storms in the north and hurricanes or floods
in the south affegbroperty—casualty insurance. A periodic time-dependent intensity rate is
a reasonable model for the claim frequency in such situations.

Chukova et al. %] shows that a random variabk with almost-lack-of-memory

P{X>x+c| X>c}=P{X>x]}, for somec,

has a periodic hazard rate (intensity) function of periodhy (t) = ;)X(((?) fort > 0.
Obvious applications in risk theory etin modelling random phenomena with seasonal
effects; car accidents, hurricanes. Some abt@rization properties of the NHP process
with periodic failure rate are derived iB,p].

A compound NHP process with periodic claim intensity rate case, called a periodic
risk model, is considered and the related ruin problems in these models are discussed
by Dassios and Embrechtg]] Asmussen and Rolskil[2] and Roli et al. [18]. These
use the theory of piecewise-deterministic Markov processes, together with some standard
martingale techniques and a corresponding average arrival rate risk model, respectively.

Garrido et al. 10] exploit the corresponding properties in a risk model, where the claim
intensity rates are modelled by a NHP procegh single)periodic intensity. Some prop-
erties of such processes, illustrated by a beta-shape periodic intensity function, are dis-
cussed. Morales]5] further explores the singly periodic NHP model by defining a Gaus-
sian intensity with which he considers the problem of ruin through a simulation study.

Furthemore, Garrido and Lull1] consider a model with a doubly periodic intensity
rate, where periodicity does not repeat exactly the same pattern in each short-term
period; rather, its peak intensity varies over a longer period. This model reflects periodic
environments like those forming hurricanes, in alternating El Nifio/La Nifia years.
Paametric forms of the doubly periodic intensity function, such as the double-beta and
the sne-beta ones, are proposed. These parametric forms are fitted here to hurricane data,
emphasizing the inferential aspects.

Tropical storms and hurricanes periodicallfeat every coastal US state along the
Atlantic and the Gulf of Mexico, from Texae Maine, year after gar. According to Cole
and Pfaff B], much speculation exists regarding thgnificance of the El Nifio effect. This
is a phenomenon generating abnormally warm acefwater temperatures off the coasts
of Ecuador and Peru, affecting global climate in the short term, including weather patterns
across North America. Particular attentioastbeen directed toward the potential effects
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of the El Nifio phenomenon on hurricane frequency and the strength attained by tropical
cyclones during El Nifio years, in comparison to non-El Nifio years (called La Nifia ones).
These can be seen as long-term climatological and periodical effects on North American
weather.

Parisi aml Lund [17] study the annual arrival cycle and return period properties of
landfalling Atlantic Basin hurricanes. A NHP process with a periodic intensity function
is used to model the annual cycle of hurricane arrival times. The data used in their
study contain all Atlantic Basin hurricanes that have made a landfall in the contiguous
United Satesduring the years 1935-98, inclusive. Kernel methods are used to estimate the
intensity function and the standamdrmal kernel function is selected.

In this paper, apart from considering treasonal effects on the hurricane arrival times,
we also consider global climatological and jpelic effects and try to model the occurrence
times of Atlantic hurricanes using a doubly periodic NHP process. A double-beta-type
intensity function is used in this parametric model and the Atlantic hurricanes affecting
the United States 1899-2000 data s&6,13 is used to stimate the parameters in the
model. By contrast to the method proposed by Parisi and LLAd4 parametric statistical
inference approach is used here to estimate the intensity function. Maximum likelihood
estimators of model parameters for this data set are obtained.

A brief desciption of the hurricane data set is given $ection 2 NHP models with
singly or doubly periodic intensity are introduced. The statistical inference of the model
parameters ipresented irSection 3 Findly, in Section 4we disass the fit of different
models to the hurricane data and give some comments. The appendix contains some tables
and remarks used in the goodness-of-fit assessment.

2. Thehurricane data set and proposed models

The data used for our study come from Neumann et dl§), [who report on 155
hurricanes that crossed or passed immediately adjacent to the Unites States coastline
(Texas to Maine), 1899 through 1992. Landrenekd) fontains 12 additional hurricanes
for the years 1993 to 2000 and is obtained from the National Hurricane Center Web site.
Henceforth we call this combined data set “the hurricane data”. Thus, over the 102-year
period 1899 to 2000, a total of 167 category 1 to 5 hurricanes crossed the Atlantic United
States coastline at one or more points.

The average annual number is 1.64 over the whole period, which means an average
of one to two hurricane landfalls per year. The years with a maximum number of six
hurricanes were 1916 and 1985, while 19 out of the 102 years had no hurricanes. It can be
observed that the hurricane season starts in June and ends in November over those years.
Furthermore, the hurricane season peak period lasts from mid-August to October, with
Septenber having had the most major hurricanes (38.9% of all hurricafég)1 shows
the annual distribution of those 167 Atlantic hurricanes, wHible 1gives their monthly
distribuion (seeAppendix Afor a discussion on the fit of the doubly periodic model to
this data set).

Let Nt, the number of events occurring in an interval of the fofft), be aNHP
process withintensity functioni(t) for t > 0. By definition, the probability oh claims
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Fig. 1. US Atlantic hurricane (1899-2000) annual counts.

Table 1
Monthly distribution of the hurricane data
Month Number of occurrences Proportion (%)
June 11 6.6
July 17 10.2
August 44 26.3
September 65 38.9
October 26 15.6
November 4 2.4
167 100.0

occurring in aime interval[0, t) is given by

e O
n! ’

where/, called the cumulative hazard function detcumulative intensity function of the
process, is defined by(t) = fé A(v)dv fort > 0. Thatis, for a NHP gcess withintensity
functionA, N; has a Pason distribution with mean(t).

When its intensity functiomloes not depend on time, i.gt) = A, forallt > 0, the
corresponding NHP process is the classical homogeneous Poisson process]@here
At is linear. FromTable 1we see that here the maximum likelihood estimator (MLE)
of » would bei = 1.64 hurricanes per year, for the homogeneous Poisson model. See
Appendix Afor the goodness-of-fit analysis of this model.

PNt =n} = eN, 1)
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Now, consider the case where the risk process evolves in a periodic environment, as
when the claim arrival rate depends on the seasons. Then the intensity function of a
NHP process is geriodic function, say with a period af > 0 years. Consequently
t — Lf—:Jc € [0,¢), fort > O, isthe time of the season, whetg| is the integer part
of t.

Models with single and double periodicity are introduced in the following section,
where they are illustrated with beta-type functions.

2.1. Asingly periodic intensity model

Assume that the short-term period is 1 (year). Letbe a beta-type function, with
parametergy, g1 > 1, defined or{0, 1], such hati1(t;) = 1, wheret; € [0, 1] is the
mode of the function. That is,

()™ -t

A(t) = o , O<m<t<mp<l, @)

0, otherwise

whereD = my — m; and

@:<q—w>“1@_q—mgml @)
D D ’
is a scale factor, while
p1—1
tf=m+D—m""——, 4
! ! p1+0dL—2 @

is the mode ofi1, so at themode,A1(t) = 1 is thepeak level.
Then the singly periodic beta intensity function is given by

At =A5r1(t—[t]),  fort =0, (5)

whereig > 0 is the (onstant) peak level fahis intensity and.; is givenin @).
The corresponding cumulative intensity functidct) is

1D t—|t]—m
A = 2% [LtJB(pl, q1)+B(p1, O; g)} t>0, (6)
aj D
where
! rpra)
B(p.q) = P11 —p)dtdy = ——
(p, ) fov 1-v) v T(p+q)
is the beta function ap, g > 0, while
0, ift<o0
t
B(p,q;t) = / P — )9l d, if t € (0,2),
0
B(p, a), ift>1

is the usual incomplete beta function.



22 Y. Lu, J. Garrido / Satistical Methodology 2 (2005) 17-35

Following the results of Garrido and LuLl], the NHP proces$N: }t>o with intensity
function gven in (5) can be decomposed as

Nt = Mg+ Mo+ -+ Mgy + Ne—ygg, t>0,

where{M; }i>1 are i.i.d. Poisson random variables distributedNas with mean A(1),
representing counts for complete years. Thekeare independent o ¢, the later
being a P&sson r.v. with meani(t — [t]), fort — [t] € [0, 1), representing the countin
the final hcomplete year. Herg(1) and A(t — [t]) can be derived fromg), respectively.

An alternative snple form for A1, which can result in a better fit with real data,
is the generalized three-panater beta function (denoted &3B(p1, q1, €); see [L2],
Chapte 25), given by

() - )

D
_ , O<mp<t<mp<l,
MO = af[L-a-o (g @
0, otherwise
whereps,q1 > 1,¢ > 0,D =my —mp and
(t;uml> p-1 (1 _ tl*fml)qlfl
« \UD D
o1 = tf—m, Pt 8)
[1 - e)lTl]
is again a scale factor, while
3—p1—(1 1 1 2_8
tom g D3PI At et VILpit At avel —8prtae g

4(1—¢)

is the node of functioniy, given by {7), such thati1(tf) = 1. Notethat ase — 1, (9)
tends to 4).

Then for the intensity function, given byp), the corresponding cumulative intensity
function 4 is derived as

5D o=t
A(t) = [t]B(p1,qy) + B | p1. au , t=0.

ajePr 1_(1_6){t—ulj3—m1]

(10)
2.2. A doubly periodic intensity model

Assume that the peak values or the levels of the short-term intensity function vary
periodically with periodc (an integer number of years). If, as above, the short-term
intensity is the beta-shape function given #),(then the doubly periodic beta intensity
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function is given by

. t
AoAas(t — [t]) |f0§t—LEJc<1
t
ATAL(t — [t ifl<t—|-|c<?2,
= D . M (11)
Ag_qda(t —[tD fc—1<t-— c c<c
whererg, ..., A¢_; are all positive levels. The resulting cumulative intensity functign
is given by
c—1 p* [t—lglcl=1 4%
A(t){ JDB(pl,ql)Z—wB(pl,ql) L
oq i—o "
AF
t—[t] — 1t
+ DB (p1, d1; A ml) & L*CJCJ , t > my, (12)
D o

andA(t) =0for0O<t <m.
The corresponding NHP proceg$\}i>o with doubly periodic intensity can be
decomposed as

Nt =M1+"'+ML%J+NT*W*"‘1’ t>0, (13)
oy
where
i-lele=t (i) . alt=LLeD
N;k—m—ml = Z NJ + N m t=ltl-m (14)
D

j=0
and the{M; }i>1 are i.i.d. Poisson distributed with me&B(p1, 1) ZJ i a* , While N(J)

is Poisson with mead B(p1, ql)a—i, forj =0,1,..., [t — LEJCJ — 1, respectively, and
1

(Lt-LLsen

N itj-m IS also Poisson with meab B(p1, q;

M
toltlomy _L-Leld Al these random
1

D
variables are mutally independent.

2.3. Adouble-beta periodic intensity model

One way to rduce the number of free parameters, in the previous moddlly is
to assume a parametric form for the long-term intensity also. Here this is reasonable if it
can be assumed that the short-term peak intensity values are affected periodically by some
smoothly varying conditions, such as the surface water temperatures in El Nifio/La Nifia
phenomenon.

More specifically, here we assume that the peak beta valjgs,.,A; ; in the
short-term intensities, follow anber continuous function of periad(an integer number
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of years), called the long-term intensity function. For instance, a beta furigtibnis also
proposed for the long-term intensity:

b—a/t—me t—me |\t
ot c c

_ _ gc—1
x[l_(t mc_f mm Ctso (15)
c c
where

t* —m pc—1 t* —m Qc—1
o = (CTC) <1_ CTC> , (16)

is again a scale factor, soandb are, respectively, the miniam and maximum amplitudes
of the peak values. Herg. is the garting point of the complete cycle of the long-term beta
function and

pc—1
tf=me4+c| ————— 17
¢ © (pc+QC—2> an

denotes the mode at.
Then the double-beta intensity function is given by

Act)y=a+

At) = Ac <LtJ - \\tJ C+t1> At — [t]), fort > 0, (18)

wherei; andac are given in 2) and (L5), respectively.

The solid Iine inFig. 2 illustrates the shape df(t) in (18), whenp; = 3,q1 = 2,
m; = 12, D= 12, c=5p.=2,q = 1 ,mMc = 3.75,a = 3 andb = 7. The peak values
of the shortterm beta) fall on the dotted line plotting the long-term beta This serves
to explain the fluctuations in the peak values\af the $iort-term beta periodicity.

If the intengty function A is given by (L8), then the corresponding cumulative intensity
function 4 has the form

lt—lglel-1
t C )L +t*
A(t){ JDB(pl,ql)ZM+DB(p1,q1) > el th)

j o i=0 ay

t— Lté_ ml) re ([t [5)c] 9 om (19)

+DB (pl, qu; =
]
where(t) is given by (L5).
For anyt > 0, the random variabl®&; admits the same decomposition as IrB)(
where the{M; }i>1 are i.i.d. Poisson, here with me@B(p1, d1) Y"5_g AC(Htl) - they are

(-1t JCJ)

LU t—[t]—mq

independent oNC(”, forj =0,1,..., [t — L Je] — 1, and ofN, , Which are

also Poisson, here with meaB®B(py, ql)%, forj=0,1,..., [t — LEJCJ —1 and
1

L * .
( P, O1; = L= ml) 2ot LC*JCHH), resgectively.

oy
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Fig. 2. The double-beta intensity functiat).

This decomposition property of periodic NHP models is particularly useful for
statistical inference, as seen in the following section.

3. Statistical inference

For the double-beta periodic intensity model ih8], the intensity is a parametric
function with parameter$s, g1, pc, ge, @ andb. It is possible to estimate these parameters
from data using maximum likelihood estimation. Note that other model parameters such
asmj, mp, me andc can usually be set at values observed from the data set.

Letd be the timescale in each short-term cycle; libte %2 amonth in each year. Then,
for the shortterm intensity function inZ), denote bym; andm, two integer multiples of
d; herem; andm; correspond to two specific months in the year, marking the beginning

and end of the hurricane season. Furthermore, ddfie

my — Mg D

‘] - - 4 — >
d d
that is the total number of months in each yearmraviich the intensity function is positive.
This gives a convenient partition of each year cyflems), [my, t1), [t1, t2), ..., [t3, M),

[m2, 1], where
tj =my+ jd, forj=0,...,J (20)

Under the double-beta intensity function given18), the contribution to the likelihood
for the first year of the first cycle is
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n)

™ 5 (v)d J —ft.j A(v)dv b I 7f1 A(v)dv
Lyp=e o *O® T e M /t A(v)dv e /m (21)
j—1

j=1

nt®

flx(u)duli[ /tj q o

=e Jo A(v)dv ,
tj—1

j=1
Wheren(-,l)1 is the number of events which occurred within th&h month[tj_y, tj) of the
first year of the fist cycle, forj = 1, ..., J. The first anl the lastterms in 1) represent
the likelihood of having no hurricanes outside the time intefual, m].
In general, the contribution to the likelihood by tkh year of the -th cycleis similarly
given by

0
: J (k—1)+t; Mk
k ] . t
Li.i :e—fk—ll(”)d”l_[</ A(u)du) ,k=1,...,c,i =1,...,{—J,
( c

j=1 K=D+tj 1

Wheren?,)k is the number of hurricanes within thjeth month of thek-th year of the -th
cycle.
Hence brthei-thcycle,i = 1,..., L%J, the total contribution to the likelihood is given

by

O)

c . c J (k—1)+; ik
Li = l_[ Lii =€ Jorwd l_[ l_[ / A(v)dv ,
k=1 k=1 ] (

—1j=1 \Y(k=D+tj_1

while thelikelihood function for aIILf—:J complete cycles is

- c J (k—1)+] 2 Mk
Leomp= & B0 TT T] / Awdv )T (22)
(

k=1j=1 \Y k=D+tj1

Finally, the contribution to the likelihood from the last incomplete cycle is composed of
the contributbns from complete years in the last cycle, the complete months in the last
incomplete year and the last incomplete month. For simplicity, setting [t — Lf—:JcJ to

be the number of years in the last incomplete cycle, we have

L+

T v J (k—1)+t; Nk
Lincomp= l—[ e Jieg Mw)dv l—[ / A(v)dv
(

k=1 j=1 \V(k=D+tj1

L+

LE Jetre+my J* ett; Totti j.zetl
- A(v)dv — LY ¢
x e ft%m’c | | g Jrertg MW A(v)dv
T

j=1 ctHtj-1
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t nq*%prl)
e th%JC+rc+tJ* Av)dv (/tLEJCA(v)dv) NENK RS | | (23)
Tett g
where
o r- LtJe= L= L4le) —mlJ _ Lt_ L:—:ch—rc—mlJ

is the nunber of months in the last incomplete year (set to 0 wh&is a negatie integer).
Note here that the last two lines reduce to

L t—(t
_ Lol

't
— [t A(v)dv
e ‘leletee — e ‘lelotwe ,

fort — [t] <my.
Hence the full likelihood function is given by2@) and @3) as

L= Lcomp' Lincomp

L+

0
e J (K—1)+t; gl njk
=g A0 1_[ / A(v)dv I
k=1j=1 \YK=D+tj_1

J

c J (k—1)+tj i 1n§i,)k
X l_[ l_[ /( A(v)dv

k=re+1j=1 \Y (K=D+tj_1

ol

i+ i+

J* e+ Nj e+l t—(L)c Nyx41,ret1
X l_[ / A(v)dv / A(v)dv . (24)
i=1 ‘L'c+tj,1 Te+Ht g«

Substitutinga for the double-beta periodic intensity function ibg], the inegrds in
(24) can be represented as incomplete beta functions, yielding

T J .
e Ae(k — 1+1t5) jd
L:e/“t>||||{7C 1D[B< : ;—)

k=1]=1 aj Pt D

L1

ey &
)|l

G k—1+t* '
< 1 H{MD[B(DLQL%)

|
os}
A/~
ke
e
el
g

(LE+

J* % . . n.
Ac(te + 1) id (j—Dd i+l
x| { o D[B(pl, Ou: D) B<p1, 0~
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A t t—|ic—1c—m
x !7°(T°j Up [B (pl, O S 1)
o D

(LEI+D

J*d nJ*+1,‘(c+1
- B <p1, du; F)j“ , (25)

where thefunctioni is given in (L5).
Denote byN = Y nﬁ'_)k the totalnumber of occurrences, for £ i < [L] +1,
1< j < Jand 1<k < c. Furtherdenote by

b(L%Hl)

the totalnumber of occurrences in theth year of all complete cycles, whi
stands for the count in thie-th year of the last incomplete cycle. Similarly

C
) _ ( i —
nj“_z N =212, ...,
k=1i=1
denotes the total number of occurrences in fid month of all comfete cycles, while

t
pilelt stands for the count in thg-th complete month of the last incomplete cycle.

Consequently, the log likelihood function is given by

D t
| =—A® +Nlog— + > [n_{-& + n.(,chJJrl)} logic(k — 1+1t7)
1 il

I iy id j —1yd
+ Z [”ﬁ,). + nﬁ%FH )} log [B (pl, O JE) -B <p1, a1; %)}

=
(LLJ+D) t—lgle—c—m J*d
T N340 11 log |:B (pl, q1; = D c — B p1, q1; o .(26)

The maximum likelihood estimators fgui, q1, pe, dc, @ and b in the double-beta
intensity function are obtained by maximizihgumerically.

Similarly, the maximum likelihood estimators for parameters in the model given in
Section 2.2with a generalized three-parameter beta short-term intensity function can be
derived as follows.

To simgify expressions, let be an integer number here. Assume that the short-term
intensity function for thé-th year of a cycle is of the generalized three-parameter beta form
in (7) with parametersp(lk), qik) ande® andxy is the peak value, whele= 1,2, ..., c.

For 1< k < 7, the log likelihood function is given by

K 4k "

t 2:DB(p, ¥y , tihg 2D

|k=—<{—J+1>%+[nF,l+nﬂ§J )j|log MO
c a:(LK) [6 (k)] Py ’ ’ (x:(l_k) [e(k)] Py
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(k id
. (L4 K (k €
DML }'09[8<p(1),t1£);—'° )

jd
= 1-(1—-e®)i5

® K et U1

t .
wherenﬁ'!)k = itjl nﬁ'fk is the totll number of occurrences in thjeth month of thek-th

year of all complete cycles am:{k) is the scale factor of thk-th year of each cycle. For
e < k < ¢, we have
D
(k)
agk) [e®]P1

° O] k) el %
+ E nj’k log | B P;7,01 5
i=1

kyyid
1—(1— el >)ﬁ

0 oM et 5
-Blpa ;1_(1_6(@)(].51)(, : (28)

lk=— \fJ AﬁDB(p&k),qf‘))

)
- +n' log
a(lk) [e®)] Py K

c

4. Discussion and remarks

As outlined inSection 2 the illustrative data set used here comprises 167 hurricanes
that made a landfall somewhere on the AtlatUnited States coastline, over the 102-year
period 1899 to 2000. These exhibit clear seasonal patterns. First, all hurricanes happened
in the monhs from June to November. September generated more major hurricanes than
any other month. On average, there were 2 lurricane landfalls per year over the whole
period. A short-term (annual) periodic model thus seems appropriate.

First consider a NHP model with single periodicitffig. 3 gives the generalized
three-parameter betatensity described in7j, that was fitted to these annual hurricane
frequencies. The parameter MLE's here @je= 1.9198,; = 11.3050,6 = 0.1349 and
5»3 = 6.5145, obtained with the Excel solver using the method describ8éation 3

The constant intensity; (t) = A = 1.64, the homogeneous Poisson process MLE, is
also shown graphically ifrig. 3 for comparison. Graphically, it is clear that the classical
model gives here a crude representation of hurricane frequencies (this hypothesis is tested
more formally inAppendix A.

Climatological studies suggest that the hurricane intensity does not repeat exactly
the same short-term pattern every year. Rather, it slightly varies from year to year, as
in alternating El Niflo—La Nifa cycles. F@xampeg, research on the tropical cyclones
affecting the coast of Texas during El Nifio/La Nifia years of 1900-1996 shows that the
highest percentage of all major hurricanes which have affected the coast of Texas occurred
when El Nifio was present for at least part of the given year (e $ome actuaries
also believe that El Nifio/La Nifia cycles inetfacific affect tropical storm systems in the
Atlantic.
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Fig. 3. The histogram and fitted hurricane intengity) for 1-yearcycles.

Our hurricane data also exhibit some long-term periodicity, under the influence of the
global El Nifio/La Nifia phenomenon. The five-year cycl€ig. 4shows low the third and
fourth years of the cycle have lower occurrences of hurricanes, the fourth year's being the
lowest. This is followed by a peak lasting for a period of nearly three yearé\(geendix A
for a formal likelihood ratio goodness-of-fit test).

This motivates our assumptions of the doubly periodic NHP process presented in
Section 2Here the seasonality of the Atlantic hurricane repeats a similar short-term pattern
every year; meanwhile the peak intensity, affected by the EI Nifio phenomenon, varies over
a longer periodic cycle.

Climatologists observed that the typical El Niidgcle cccurs within a 2—7 year cycle.
From a graphical analysis of the data set, we conclude that a long-term peticdyears
and a short-term period of one year describe the Atlantic hurricanes reasonably well.

Fig. 4 compares the observed and expected monthly average numbers of hurricanes
over the five-year cycle for the 1899-2000 data set. A double two-parameter beta intensity
function was used and the following MLE’s were obtaingd:= 3.0145,§; = 2.4389,
pc = 1.5463,G; = 1.3642,4 = 3.2354 and = 6.9634, wherej; andg. are obtained
from (4) and (7), respectively, whilethe estimated standa deviations forps, fc, a
andb are 0.3582, 0.7653, 0.7890 and 0.9126, respectively (sfe Appendix A2 for
a deriation).

Climatology suggests that the levels for the long-term cycle are governed by some
underlying smoothly changing function, repeased by the second beta function. The fit
for each short-term cycle seems quite goaghmorting our periodic theory. But the model
does not adequately explain the short-term peaks over the long-term cycle. The EI Nifio/La
Nifilaphenomenon is global, perhaps too complex to capture with such a simple parametric
model.
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Fig. 5. Hurricane data and five-year generalized double-beta intensities.

Depending on the intended use of the model, the fit can be improved by the introduction
of additional parameters. For instance when a generalized three-parameter beta intensity is
used for the short-term cycle, while the long-term beta function is kept at two parameters,
the following MLE’s are obtainedp; = 1.8946,1 = 12.3899,¢ = 0.1205,p. = 1.5639,
6c = 1.3921,a = 3.5868 andb = 7.7307. It is clear fronFig. 5that the fit is improved
(although still not perfect), at the cost ofiatlucing only one additional parameter.
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Fig. 6. Hurricane dta five-year short-term generalized beta fit.

Table 2

MLE’s d three-parameter beta intensities for the hurricane data
Year pi g ® A
1 2.0087 150.0076 0.0097 9.3381
2 4.7926 3.0123 1.3227 7.2847
3 1.1459 11.9872 0.0820 5.8373
4 20586 121.7060 0.0150 3.9563
5 3.0769 155.4399 0.0165 8.4431

If fit is more important than simplicity of the model or smoothness, the number of
paameters can be further increased by letting the short-term cycle peak values be free.
Fig. 6 gives the histogram and fitted beta intensities, as 1i)( for monthly hurricane
frequencies over a five-year long-term cycle.

Here the generalized three-parameter beta functio)invds ued as the short-term
intensity and the MLE’s, given iflable 2 were dcerived from @7). The fit improvementis
substantial for each short-term intensity iretfive-year cycle. Yet, the model now fails to
explain how hurricane intensities vary from El Nifio to La Nifia years. A possible remedy
is the useof random effects on certain years of the cycle.

In conclusion, it appears that NHP risk models are more realistic in practice than
classical Poisson processes, as their intensity rate is a function of time. This is clearly
the case for hurricane landfalls.

In general, NHP processes with a periodic claim intensity can be useful in modelling risk
processes that evolve in a periodic environment. The proposed double-beta periodic claim
intensity not only generalizes the classical risk model, but also can give a more realistic
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Table 3
Chi-squared goodness-of-fit testirgr the homogeneous Poisson model
Counts Observed Expected Chi squared
0 19 1984 0.04
1 34 3248 0.07
2 25 2659 0.10
3 18 1451 0.84
4+ 6 8.57 077
Total 102 102.00 1.81

representation than (singly) periodic models with only short-term periodic intensity
functions.

The flexibility in shape of the beta function and the explicit results obtained for the
risk process, as well as the tractability of the statistical estimation of model parameters,
should make these double-beta periodic models easy to use in practice. We hope that the
illustration of the hurricane data set serves to show that NHP risk models can also be
tractable if properly parametrized.
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Appendix A. Goodness-of-fit analysis

Figs. 1 and 3 provide graphical evidence that annual and monthly, respectively,
hurricane counts show a periodic behaviour.

More formally, we can test the alternate hypothesis of a constant hurricane intensity,
A1(t) = A = 1.637254902, resulting in a Poisson nioen of hurricanes per yeaFable 3
reports the Poisson expected and observed numbers of years with 0, 1, 2, 3 and 4 or more
hurricanes (the last observations were grouped to be representative).

A simple di-squared tes{X? = 1.81 < X; 005 = [.81) does not reject the
homogeneousPoisson assumption. Still, it is clear fromable 3that the fit is poor in the
tail of the distribution.

The Poisson model with constant intensity predicts well the expected numbers of years
with lower hurricamefrequencies (e.qn = 0, 1 or 2 hurricanes per year), but gives a poorer
prediction of the numbers of years with higher frequenaes:(3 andn > 4). The fit in
the tail is usually very important in insurance applications.

Furthermore, the homogeneous Poisson model fails to recognize the short-term seasonal
and long-term cyclical patterns that the hurricane data exhiBign5. A more gpropriate
statistical indicator here is to test the significance of the additional parameters in our
double-beta periodic models.
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Fig. 7. Hurricane data autocolagions; five-year cycle counts.

Since the classical Poisson model is a special case of the double-beta periodic model
with four parameters, ifrig. 4, we call it thereduced model. A likelihood ratio test can be
used to test the homogeneous Poisson hypothesis (reduced model), against the alternative
of our more complete four-paraater model. The test statistic= 2(499.645—345407) =
308476 > X32;0_05 = 7.81 is very significant, supporting the futomplete model
hypothesis.

Similarly, in testing for the extra parameter in our even more comflétenodel used
for Fig. 5, with a generalized three-parameter beta function for the short-term intensity, the
test statistic = 2(345407—335936) = 18942 > Xlz; 0.05 = 3-84 is also very significant.

This full double-beta periodic model with five parameters explains the observed periodicity
more adequately than the above reduced and complete models.

The other assumption that should be tested is that of dependence on time. The hurricane
counts observed here are not assumed to be fiyitigpendent (autocorrelated), but rather
dependent on the time (season) of occurrence. Once a cycle completes, every five years,
then this depedence on time gets reset. Subsequent five-year cycles are thus independent,
as in the decomposition inl®). Fig. 7 shows the abseercof aubcorrelations, in these
five-year cycle counts.
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Regime-Switching Periodic Models for Claim
Counts

Abstract

We study a Cox risk model that accounts for both, seasonal variations
and random fluctuations in the claims intensity. This occurs with nat-
ural phenomena that evolve in a seasonal environment and affect insurance
claims, such as hurricanes.

More precisely, we define an intensity process, governed by a periodic
function with a random peak level. The periodic intensity function follows
a deterministic pattern in each short—term period, and is illustrated by
a beta—type function. A two-state Markov chain defines the level process,
explaining the random effect due to “high” or “low risk” years. This yields a
regime—switching process, alternating between the two resulting intensities.

The properties of the corresponding claim counting process are discussed
in detail. By properly defining the Lundberg coefficient, Lundberg—type

bounds for finite time ruin probabilities are derived.



1 Introduction

Consider the risk process
N(t)
Ut)y=u+ct—» X;, t>0, (1)
j=1

where w is the initial value, ¢ is the (constant) premium rate, { N(¢)};>¢ is a point
process which models the number of claims arriving within the time interval [0, t)
and X is the j-th claim size. When {N(¢)};> is a Poisson process with (constant)
intensity A and the claim size sequence {X;},>1 are i.i.d. and independent of N,
then (1) is known as the classical (homogeneous Poisson) risk model, which has

been investigated extensively in the actuarial literature.

The classical risk model is not realistic in some practical situations. Two main
modifications are made here. First, a non-homogeneous Poisson (NHP) process
is used to model “size fluctuations” in the claim intensity of a risk subject to
seasonality. Then, a Cox process, also called doubly stochastic Poisson process
and a natural extension of the NHP process, is used to characterize the underlying

“risk fluctuations” in the claims intensity [see Grandell (1991)].

The risk theory literature gives only a few results when the claim counting process
is a NHP process. Dassios and Embrechts (1989) defines a risk model with periodic

claim intensity and consider the corresponding ruin problems using a martingale



approach. Similar models are also considered by Asmussen and Rolski (1994)
and by Rolski et al. (1999). Two-sided bounds and asymptotic formulae for ruin
probabilities are derived by using an average arrival rate risk model. Berg and
Haberman (1994) uses a non-homogeneous Markov birth process, of which the
NHP process is a special case, to predict trends in life insurance claim occurrences.
Dimitrov et al. (2000) exploits some properties in a NHP risk model with a (single)
periodic claim intensity. Morales (2004) chooses a Gaussian shape for the periodic
claim intensity function. By contrast, Garrido and Lu (2002) considers a more
general double periodic intensity rate. Possible forms of intensity functions, like

the double-beta and the sine-beta, are proposed.

An early reference to Cox risk models is Ammeter (1948). In his model, the inten-
sity A, over time intervals [(k—1)A, kA) of (fixed) length A, for k& € Nt forms an
i.i.d. sequence {\g}r>o. This model is generalized by Bjork and Grandell (1988),
who consider the intensity as A\(t) = L; if ¥, <t < 3;, where ¥; = o1+ - -+ 0y,
with ¥y = 0 and (L;, 0;) a sequence of i.i.d. random vectors. Ammeter’s model is

revisited by Grandell (1995) and more properties of the model are discovered.

Asmussen (1989) proposes a Cox risk model, called a Markov-modulated Poisson
process, whose intensity process {A(t)}:>0 is given by A(t) = Ajqu). Here the

process {.J(t)}+>0 models the random environment of an insurance business and is



assumed to be an irreducible continuous time Markov chain, with finite state space
{1,2,...,l}. Furthermore, a Cox risk process with a piecewise constant intensity
is considered by Schmidli (1996), where the sequence {L;};>1 of successive levels

of the intensity forms a Markov chain.

Ruin probabilities have been studied in these Cox models with a piecewise con-
stant intensity. Lundberg inequalities hold, provided some assumptions are ful-
filled. These may not be practical due to the difficulty in estimating the Lundberg
coefficient and evaluating some constants within the inequalities. Other papers

regarding to this topic are Embrechts et al. (1993) and Schmidli (1997).

There are very few results in the risk theory literature regarding Cox processes
with other than piecewise constant intensities. Recently, Schmidli (2003) consi-
dered a NHP model with doubly stochastic occurrences for the PCS catastrophes
index, based on individual indices for PCS options, where the intensity is of the

form AA(t), with A is stochastic and A(¢) is a given function.

Some natural phenomena evolve in a seasonal environment subject to random
fluctuations which, in turn, affect insurance claims. For example, tropical storms
and hurricanes periodically affect the coastal US states along the Atlantic and
the Gulf of Mexico. The claim intensity then forms a specific pattern for each

year which can be modeled by a periodic function. Speculation exists regarding



the significance and potential effects of the El Niio phenomenon on hurricane
frequency and the strength attained by tropical cyclones during alternating El
Nino/La Nina years. These are random effects that, in some sense, affect the risk
propensity or the peak level of the seasonal intensity, which can be modeled by a

stochastic process.

In this paper we propose a Cox model that accounts for both, the seasonal va-
riations and the random fluctuations in the claims intensity. Beard et al. (1984)
and Daykin et al. (1994) suggest an intensity process A as a composition of some
factors, such as the normal trend, deviations from it and the short—term variations
in risk propensity. Here we simply consider an intensity process with the following

structure

Alt) = As(t)a(t), =0, (2)

where Ag(t) is the short—term intensity function and q(t) is a stochastic (level)
process. The periodicity of the short—term intensity function is also considered,
which takes into account those insurance claims affected by a periodic environ-
ment, like hurricanes or seasonal storms. A Markov chain with two states, cor-
responding to two different (high and low) levels, is chosen for the level process,
yielding a so called regime-switching process. Under this intensity process, pro-

perties of the claim counting process and its corresponding risk process are studied



in detail. By properly choosing the Lundberg coefficient, Lundberg—type upper

bounds for finite time ruin probabilities are derived.

The paper is organized as follows. The model is defined in Section 2. Section 3
discusses the properties of the claim counting process. This gives a precise descrip-
tion of the model characteristics, such as the probabilities of recording k claims
during the time interval [0,¢), for ¢ > 0 and k& € N, and the expectation of the
integrated intensities in (2). In Section 4 we derive Lundberg—type upper bounds

for finite time ruin probabilities and illustrate the results by some examples.

2 A Cox model with a regime—switching

periodic intensity

Consider an intensity process {A(f)}:>o governed by a deterministic pattern in
each short—term period, say a year, and a random effect on its peak level, that
is the amplitude of the pattern. This fixed intensity pattern can be seen as the
short-term periodicity, like in the NHP process. Assume we have two different
risk levels; Ao which represents the risk under “low season” conditions, while the
other, A1, represents the peak intensity under “high risk” years. In practice, such

conditions can be slippery roads, foggy days, stormy weather, years affected by



the El Nino phenomenon and so on.

Furthermore, assume that the intensity level modulates by an irreducible discrete
time Markov process, K = {ky }n>0, with finite state space {0, 1} and the transition

probability matrix P, given by

1 — po1 Po1
pP= . (3)

P1o 1 —pio

Without loss of generality, we assume that the short—term period is 1. Let 3 be a
function defined on [0, 1], such that G(¢*) = 1, where t* € [0, 1] is the mode of the

function. Consider the intensity process A, given by

M) = A, BE=1t]) 120 )

This gives A(n+t*) = A\, B(t") = A\, for n € N, that is, the peak of the function
A(t) within the (n + 1)-th year [i.e. ¢ € [n,n+1)] is A,,, which changes according

to the Markov chain . As such, we call ), the intensity level for year n + 1.

In the sequel, we illustrate the annual common intensity pattern as a beta—type

function with parameters p > 1 and ¢ > 1, given by
Bt)=a*tP (1 —-t)T 0<t<1, (5)

where a* is a scale factor, given by

. L q4 = P71
o = an E
(#)p=1 (1 —tx)at p+q—2




is the mode of (t), t € [0,1]. As such, note that at the mode F(t*) = 1 is the

peak level [see Figure 1]. Also denote the beta function in the usual way

B(p.q) = /0 V(1 = 0)"du = 7?((2;)53)), P21,

and the incomplete beta function at p, ¢ > 1 as

t
B(p,q;t)z/ P (1 —0)" do te (0, 1),
0

with B(p,q;t) = 01if ¢t <0, while B(p, ¢;1)

[t]B(p,q) +B(p,q;t — [t]),if t > 1.

hetaf])
lambda(

Figure 1: ((t) and one realization of intensity process A.

Figure 1 illustrates function (), when p = 3 and ¢ = 2, as well as a realization
of the intensity process A, when p =3, ¢ =2, A\y = 0.75, \; = 1.2, pg; = 0.25 and

p1o = 0.5.

Consider a special Cox process, the claim counting process {N(t)};>o with an

8



intensity process as in (4). Due to the periodicity of the function (¢t — [¢]), for
t > 0, and the transitions, from year to year, between levels \y and \{, we call this

risk model a regime—switching periodic non-homogeneous Poisson (NHP) process.

Let {N;(t)}i>o for i = 0,1, (with N;(0) = 0) denote a claim counting NHP process
with intensity function \; 3(t — |t]) over the time interval [0,¢). That is N;(t)
is Poisson distributed with mean \; fotﬁ('u — |v])dv = X\;a* B(p,q;t). Then the

process {N(t)}+>0 can be represented as

N(t): Z)/i(LtJ)Ni(l)—f'NnLtJ(t)_NELU(UJ) ) t=>0, (7)

i=0,1

where Y;([t]) = Y1 " I(k, = i) denotes the number of years in [0, [t]) that

n=0

spends in state i, for ¢ = 0, 1. This implies that, the conditional expected number

of claims in the time interval [0,¢), given the environment, is:

E[N(t) | ko, K1,-.. ,K[y]
lt]-1

1 t—|t]
— Z/O )\Hnﬁ(v)dv—i—)\ﬁttj/o B(v) dv
n=0

= L([t])) a" B(p,q) + A, @ Blp,git — [t]),  t>0,
where
L([t]) =Yo([t) Ao+ Yi([th A, £20, (8)
denotes the sum of A\g and \; values in [0, [¢]). Hence, we have

E[N(#)] < max{Xo, M1} a” B(p, ¢;1).

9



The corresponding compound NHP process {S(t)}+>¢ is given by

N(t)

St =Y X;, t=0, (9)

j=1
where the X;’s are the claim sizes with distribution function F'x, expected claim
size ju = [ vdFx(v) and moment generating function rx(s) = [;° e dFx(v),
for some s > 0. These claim severities are assumed independent of the Markov

environment process k and hence of the claim counting process {N(t)}:>0. As in

(7) process {S(t) }+>0 can also be represented as

S() = S0 Villt) Si(1) + Su (6) = S (1)), £20,

i=0,1

where S;(t) = SN0 X;.

7=1
Now consider the continuous-time surplus process {U(t)}+>0, given by
Ult)=u+ct—S(t), t>0, (10)

where u is the initial capital value and c is the constant premium rate. The
aggregate claim process {S(t)}:>0 is given in (9) and the claim counting process

{N(t) }+>0 is the regime-switching periodic NHP process in (7).

Since the Markov environment process « is assumed irreducible, it has a stationary
initial distribution, denoted by m = (mg, ). Then by the law of large numbers

for irreducible Markov processes, we have:

_U(t) ]
hmT:c—uZm)\icy B(p.q) (11)



[see Rolski et al. (1999, Chapter 12)].

(11) implies that ruin occurs almost surely if the process has a negative drift, that

isc<pdi_oymANia"B(p,q). Therefore we assume that the net profit condition

c> Z TN " B(p,q) , (12)

1=0,1

holds in the sequel.

3 Properties of the regime—switching periodic

process

For the regime—switching periodic NHP process defined above, the random mea-
sure A in this Cox process, given the realization of the environment process x up

to time ], is:

t
A(t) = / Aw)dv = L([t]) " B(p,q) + Any,, @ Bp, it = [t]),  t>0,
0
(13)
where L(|t]) is given in (8). Then the conditional probability that the number

of claims is k in the time interval [0,¢) is obtained as:

ADF s
k! ’

P{N(t) =Fk | Ko,k1,... K|y} = keNT,

11



where A(t) is given in (13).

In order to calculate P{N(t) = k}, we need to know how many times \q appears
in the sequence {Ayy, Ay, .-+, A, } (then the number of Ay values is fixed). This
is equivalent to finding how many times 0 (say, “failure”) or 1 (“success”) appears
in the corresponding sequence {kq, k1, . .. , K| }. To do this, we denote Y;(n) to be
the number of times that successive n-length sequences of the time-homogeneous

{0, 1}-valued Markov process « are in state i, for i = 0, 1.

Many papers discuss formulas or recursions for the distribution of success runs of
several lengths in a two—state Markov chain [for example, see Han and Aki (1998)].
From these, it is not difficult to derive the distribution of the number of successes,

Y1(n), which takes values in {0,1,... ,n} and can be obtained as follows.

Let FE;(n,y) denote the conditional probability of y successes in a (n + 1)-length
sequence, given that the sequence starts from state ¢, for ¢ = 0,1. That is,
Eys(n,y) = P{Y1(n) = y} and E\(n,y) = P{Yi(n) = y — 1}. For convenience,

define F;(n,y) = 0 for all y < 0, n > 0 and ¢ = 0,1. We have the following

12



recursive formulas for probabilities E;(n,y).

Ei(0,0) = 1,  fori=0,1,
Eo(n,y) = (1—po)Eo(n—1,y)+ nz_lpm (1= p1o)™ "pro Eo(n —m — 1,y —m)
m=1
+po1 (1 — p1o)" ' E1(0,y — n) , for0<y<n, n>1, (14)
Ei(n,y) = pioEo(n—1,y)+ nz_l(l — p10)"pro Eo(n —m — 1,y —m)
m=1
+(1 = p10)" E1(0,y — n) for0 <y <n,n>1.

Denote by P,(y), the probability of Y;(n) = y (implying that Yy(n) must be n—y)
in a n-length sequence of the {0, 1}-valued irreducible Markov chain x. Then
assuming that this n-length sequence starts kg, the law of the total probabilities
gives:
Poy) = Y PMi(n) =y | ro =i} P{ro =i}
i=0,1
= mP{Yiln—1)=y | ko=0}+m P{Yi(n—1)=y—1| kg =1}

= moEo(n—1,y)+m Ey(n—1,y—1)

= ZﬂiEi(n—l,y—z’), for0<y<n,neN, (15)
i=0,1

where E;(n — 1,y — i) can be recursively calculated from (14) and (g, ) is the

initial distribution of Markov chain .

For example, in a 3-length sequence, the probability that there are no successes

13



is given by:
P3(0) = 79 Fo(2,0) = 7 (1 — po1) Fo(1,0) = 7 (1 — po1)? Eo(0,0) = 7o (1 — po1)?

since first it has to start from state 0 and then stays at 0 (failure) for the next

two steps. By contrast, the probability that there are 1 success and 2 failures is

Py(1) = moEp(2,1) +m E1(2,0)
= To [(1 — po1) Eo(1, 1) + por p1o Eo(0, 0)] + 71 p10 Eo(1,0)
= 70 [(1 = por) por E1(0,0) 4 por pro] + m1 pro (1 = por) Eo(0,0)
= T [(1 — Po1) Po1 +P01p10} + 71 P10 (1 = po1)
since if the sequence starts at 0, it must go to 1 once in the next two steps.
But if the sequence starts at 1, it has to stay at 0 for the next two steps, and

so on. Similarly, we have P3(2) = mpo1 (1 — p1o) + 71 p1o [por + (1 — p1o)] and

P3(3) = mi(1 = pio)*.

We introduce the following notation for abbreviation. Denote by A, (y) the ran-
dom measure under a realization of y periods at level A; (and hence n —y periods

at Ag), in the sequence {\., Axyy- -+, Aw,_, }- That is
Au(y) = [(n=y)Xo+yM] " Blp,g), 0<y<n neN.  (16)
Then we have the following theorem for the probabilities P{N(t) = k}.
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Theorem 1 Let k = {k,}n>0 be a {0, 1}-valued irreducible Markov chain with
transition probabilities given by (3) and initial distribution (7o, 7). For the coun-
ting process {N(¢)}i>0, given by (7), the probabilities that there be k claim oc-

currences during the time interval [0,¢), for t > 0 and k € N, is given by

[t]
P{N(t) =k} = Z Py (y) {Z (70 poi + ™1 p1i) € (A1) ()47 o Bpat—1t))]
y=0

i=0,1

[AUJ (y) + A Ol*lf(l% ¢t — Ltj)]k } 7 (17)

where P (y) and A (y) are obtained from (15) and (16), respectively.

Proof. See the Appendix. O

Note here that (17) can be re-written as

P{N(t) = k} = E[P{N(t) = k| 6o, 51, .. .55y} =E [Aﬁfﬁ €A<t>] |

where A(t) is given by (13). It means that this regime—switching periodic NHP

process can also be interpreted as a mixed Poisson process.

The random measure A(t) of this special Cox process is given by (13). Taking

expectations in (13) directly gives

EA(M] = E[L(t]))a” B(p,q) + Aey, 0" B(p,g;t — [1])]

= o B(p,q) E[L(|t]))] + a" B(p,g;t — [t]) E[Ae,, ]

15



then since E[Y1([t])] = ZbﬂoyPLtJ (y) and E[/\,.gw] = X\ [WO (1 —po1) + m pm} +
)\1 [’7'('0 Po1 —+ M (1 — plo)], it follows that
t]
E[A®)] = o Blp,g) > Py [([t] —y) X +y ]
y=0
‘f’a*B(PaC];t—LtJ)Z/\i(WOPOi+7T1P1z‘), t>0.(18)

1=0,1

It is not difficult to see that (18) is equivalent to

]
E[AQ)] = ZPLtJ (y) Z(Wopm + 1) [Ap(y) + Xio® Blp, gt — [t])]

then when ¢ > 0 and s < ay, the moment generating function of A(t), maw)(s) =

Elexp{sA(t)}], is given by

1
ia () = 3 Py(y) 3 (mopos + w1 pry) e (M@ one Boaet] g
y=0 =01

where ay € R* is such that limgya, maw (s) = +oo, while Py (y) can be obtained

from (15).

It is interesting to see that (19) can be re-written as

t)
maw(s) = Z Py (y) S ) Z (0 Pos + 71 pi) €53 Bpait—1t))
y=0 i=0,1
- mA(LtJ)(S)mA(HtJ)(S ) s < ap ,

showing that A(t) = A([t]) + A(t — |t]) and that these are independent.

Theorem 1 and the above results on A(t) allow for the derivation of the moments
of N(t). For instance, applying Fubini’s Theorem and simple manipulations to

16



(17), gives the probability generating function gy (s) = E[sV®]:

t)

N (s) = Z PLtJ(y)Z(WOPOi‘i‘ﬁpu) (5= D) [A 1 W)+ o Bp,ait—t))]
y=0 i=0,1

= E[eC DAY =y (s — 1), |s|<1.

Furthermore, taking the r-th derivative of gy (s) with respect to s € (0, 1),

ggzt)(s), and its limit as s T 1, yields the following successive factorial moments

of N(t) (that these be finite or not):

E[N@INE) = 1] N0 =+ 1] = 5(1) = lim g (s)

In particular, we have that:

E[N@®)] =E[A(®)] and  V[N(#)] =V[AQD)] +E[A®W)] .  (20)

which imply that the index of dispersion of N(t) is In«) = Eﬁgﬂ =1+1Izp > 1,

showing that N(t) is overdispersed, by contrast to the classical Poisson process.

4 A Lundberg upper bound for finite time ruin

probabilities

This last section discusses the ruin problem for our special Cox process. The risk
(income) process, over the time interval [0,¢), with initial value R(0) = 0 and a

17



constant premium rate c, is given as

N(t)

R(t)=ct—S(t)y=ct—Y X;, t>0, (21)

where the claim counting process { N(t)}:>o is the regime—switching periodic NHP
process driven by our {0, 1}-valued Markov chain x and S(t) is as in (9). Further

assume that the moment generating function rmx(s) = [ e dFy(x) is twice

0

differentiable on an interval [0, ax), where ax > 0 and limg,, mx(s) = +oo.

Denote the Laplace-Stieltjes transform of R(t) by I(r;t) = E[e " #®]. Assuming

it exists, it is given by

I(r;t) = [x(r)-1] =re : r>agry , t>0. (22)
Similarly, for ¢ =0, 1, let

Li(r;t) = E[e*’"Ri(t)} =E[e" (et—3251" XJ')}
i@ Bleait) [mX(T)_l} et > ap , t>0. (23)
Let the time to ruin be defined in the usual way:
T,=inf{t >0 | u+ R(t) <0}, u>0.

The ultimate ruin probability W(u) is then given by:

U(u) = P{T, < oo}, u>0.

18



Using the martingale approach to Cox models discussed in Grandell (1991) we

can prove the following result.

Theorem 2 The following Lundberg-type upper bound holds for the finite time

ruin probability in model (21):

P{Tu < to} <e™E [ sup l(?“;t):| , 0<ty<oo. (24)

0<t<t,

A tighter upper bound can also be obtained for 0 <ty < oo, as:

_ e’ Fx(y)
PiT, <togr <e ™E| sup l(r;t)|su — , 25
{ o} Lgspto ( )] e { S, e dFx(x) (25)

where Fy = 1 — Fl is the tail of the distribution function of X.

Proof. For details see the Appendix. a

The upper bound given in (25) is difficult to use in practice. To derive a corres-
ponding useful bound for our regime-switching periodic NHP model, first define

the average risk level, given by
A =moAo + T AL, (26)

and consider, for r > 0, the equation

0(r) = Ao B(p,q) [x(r) —1] —rc=0. (27)
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The solution, v > 0, to (27) satisfies:

Aa* B(p,q)[ix(7) — 1] = yc. (28)

Here v is an adjustment coefficient for the average risk level X in (26), where Ay,
the peak intensity under “high risk” years, is assumed larger than that in the “low

season” (i.e. \g < A1). It follows from (28) that
* A )\Z .
Aia* B(p, q) [x(y) — 1] =3¢ i=0,1. (29)

The existence and unicity of v in [0,ax) is guaranteed because 6(0) = 0 and

0'(0) = Aa* B(p,q) p — ¢ < 0, provided that the net profit condition (12) holds,

and hence the convexity of 6(r) ensures that 6'(y) > 0.

Assume that g is an integer. Then with probabilities P, (y), given by (15), A(to)

takes the following realizations:
A (y) = [(to —y) Mo+ y M) @* B(p,q) , 0<y<ty, toeN.

When 0 < ¢ < tg, we have two possibilities for A(t), depending on the value of

A One is

Rty

At) = [([t] = 2) Ao+ 2XMi] a* Blp,q) + Moo Blp,qit — [t]),  0<t<t,
(30)

where 0 < z < min{|¢|,y} and |[t] —z+1 < ty—y, or equivalently, z € C(t+1,y) =

20



[ max{0, [¢] + 1 — (to — y)}, min{[¢],y}]. While the other is

At = [(It] =2) do+2M] a"B(p,g) + e’ Blp,gst — [t]) . 0<t<to,
(31)
where similarly, 0 < z < min{|t],y — 1} and [t] — 2z < tg — y, or equivalently,

z € C(t,y — 1) = [max{0, [¢] — (to — y)}, min{[¢],y — 1}].

When A(t) is given by (30), then (28) and (29) imply that:

A(t) [ix(y) = 1] —~et = ([t] — 2) [Noa* B(p, q) (x(y) — 1) —v¢]
+z [Ma* B(p,q) (mx(y) —1) =~ ¢]
+Xoa* B(p,qit — [t]) (hx(y) — 1) —ye(t — [1])

— —LtJ(S\_/\)\O>’yc+z()\1;)\o)fyc

+Xo o B(p, g;t — [t]) [mx(v) — 1] —~c(t — [t)).

In turn
sup [(v;t) = sup A [Thx(’Y)—l] et
0<t<tog 0<i<to
= sup < (@)WH\O o Blpat=1t]) [mX(W)—l} —ye(t—[t])
0<t<to
z€C(t+1,y)
= max e° (@)VC max [o(y;v)
ey 0<v<1 !
zeC(t+1,y)
A1—Xg
< Y ( X )vc ‘ '
T 3

21



Similarly, when A(¢) is given by (31), then

sup I(v;t) < e (M1570)e max [y (vy;v) < e¥ (215%9) e max [1(7;v) ,

0<t<to 0<v<1 0<v<1

which has the same form as (32). Taking expectations gives

E{sup lrt} ZPtO M AO)WC.

0<t<t,

Finally, setting » = ~, gives a Lundberg—type upper bound for the finite time ruin

probability in (25), for ¢y € N, that is:

% Y @ ve eryFX(y)
> Pl >]0@3X“ >Sup{f;oerxdpx<x>}>

y=0 1=0,1 y=0

P{T, <to} <e "

(33)

where v satisfies (28) and P, (y) is given in (15).

Obviously, the simpler bound for P{T, < ¢y} given by (24) can also be derived

here:
o [ g (21520) e
P{T, <t} <e ZOPto(y)e 3 Org?lll (), (34)
Y= 7

but (33) is tighter than (34), as shown in the following examples.

Example 1 Consider claim sizes that are exponentially distributed with mean

p.  Their moment generating function mx(s) = 1——1us’ for s < ax = i The

adjustment coefficient for parameter )\, is then given by

c— Mo B(p, 1 AXa*B(p,
o o Blp.g)p _ 1 (n.9) (35)
cl W c
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which is the positive solution to equation (28). The corresponding l;(y;v), given

in (23), takes the form

Ai B(p,q3v)

lz(’}ﬂU):e(T B(p,q) *U)’YC O§’0<17 220,1 (36)

)

upper bound (a) upper bound (&)
- - upper bound (b - - upper bound (b

P{Tu=t_0}

Figure 2: Upper bounds for exponential claims vs u (tg = 20) and ¢ (v = 10).

Figure 2 illustrates the upper bounds in this exponential case, as a function of u
(left graph), when t, = 20, and as a function of ¢y (right graph), when u = 10.
The other parameters are chosen to be \g =1, A\ = 1.2, p =3, ¢ = 2, pp1 = 0.25,
po = 0.5, ¢ = 1.5, p = 1.5 and v = 0.267, which is obtained from (35). Clearly,

the upper bounds (a), given by (33) are sharper than those in (b), given by (34).

Example 2 Consider the case of inverse Gaussian distributed claims, with mean
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1, variance p (3 and density function

(z—p)?
fx(@)=—L—e 9 | 2>0.

\/ 27 B3

Their moment generating function mx

(s) = €5 17VI7259) oxigts for s < % The

adjustment coefficient v with respect to parameter A is the positive solution to

the equation
Ao B(p, q) eh (1-vr=237) —1| =~ve¢, (37)
and [;(v; ), for i = 0,1, is of the same form as in (36).

Figure 3 illustrates the upper bounds in this inverse Gaussian case, again as a
function of u (left graph), when t; = 20, and as a function of ¢y (right graph),
when u = 10. The other parameters are chosen as for Figure 2 and g = %, which
gives a variance of 4. Here v = 0.155 is obtained from (37). Again the upper

bounds in (a), given by (33) are sharper than those in (b), given by (34).

Conclusions

Regime-switching periodic NHP processes can be useful in modeling risk processes
under periodic and random environments. A beta-type short-term intensity func-

tion is proposed with a two—state Markov process to model the peak level in the
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upper bound (a) upper hound (&)
- - upper bound (@) - - upper hound )

PiTu=t_0}

Figure 3: Upper bounds for inverse Gaussian claims vs ¢y (u = 10) and u (to = 20).

intensity of this Cox risk process. This generalizes the periodic NHP model. It can
also provide more realistic descriptions than Cox models with piecewise constant

intensities.

The flexible shape of the beta function and the explicit results obtained for the
Cox risk process should make these regime-switching period NHP models more
practical than Cox processes with piecewise constant intensities, or than the usual
NHP process. However, this work can be extended to other reasonable short—term
intensity functions or regime-switching level processes with multi—state spaces.
Furthermore, statistical methods to estimate from real data set the beta parame-
ters and level parameters of the model are readily available and shall be illustrated

in subsequent work.
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Appendix

Proof of Theorem 1: By the law of the total probabilities, it is easily seen that

PIN(t) = k} = P{N([t]) + [N(t) = N([t])] = ¥}

=Y P{N([t])) =1} P{N(t) = N([t]) =k — 1} .

Furthermore, since

11
P{N(t) =1} = Y P{N(lt)) =1[Yilt]) =y} P{YA(E)) = v}

L¢]

A l
= > [wl#)] e MW Py (y)

y=0

and

P{N(t) = N([t]) = k =1}

N ) k-1
[)\i o B(p, q;t — LtJ )} e~ a* Bp.git—[t])

(& —1)!

= (7o Poi + ™1 P1i)
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we now can write

[t]
P{N(t) =k} = Z Py { (0 poi + ™1 p1i) € [AW (¥)+Ai 0" B(p’q;t*m)]

=

—

l

i Amy

=

[t]
- Z PUJ { Z ™o Po; + 71 ph) [Am (y)+Ai a* B(p,q;t— LtJ)]

y=0 1=0,1

Apy(y) +Xia* B(p,g;t — [tj)]k}
k! ’

which completes the proof. a

Proof of Theorem 2: Consider the martingale approach to Cox models discussed
in Grandell (1991). Let F be a suitable filtration, M be a positive F-martingale
(or a positive F-supermartingale) and 7' be an F-stopping time. Choose tq < oo

and consider ty A T', a bounded F-stopping time.

By the optional stopping theorem, we have that
M(0) > EP[M(tg ANT)] > EX[M(T) | t < to] PP{T <t}

and therefore

M(0)
ER[M(T) | T <to]’

PPUT <t} < to < o0 .

Let the risk process R be adapted to F, that is F; O F2 for all t > 0. Then the
ultimate ruin probability W(u) is seen to be:
U(u) = P{T, < oo} = E[P7{T, < o0}] , u>0.
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Now consider N to be a Cox process with intensity process {A(¢)}>¢ and random
intensity measure A, given by A(t) = f(f A(v) dv. A suitable filtration F is defined

as Fy = FA Vv FE and thus Fy = F2. Consider the following choice of process M:

e [utR(t)] e T lutR(t)]

M(t) = 1(r;?) T oAWD) Iax (N —1—ret t20,

where R(t) is given in (21).

It can be shown that M is an F-martingale where the filtration is given by F; =

FA v FE. A lower bound is obtained when 0 < ¢y < 0o as

EFo [M(Tu) }Tu < to] > EFo [e_A(Tu) [nx (r)—1]+r cTu }Tu < to}

> inf e—A(t) [mx (r)—1]+rct ' (38)
— 0<t<t,

More precisely,

E7[M(T,) | T, < to]

— E70 [T B RT] -MT) bx (-1 eTh | 7 g ]

> Ogi?gfto {e*A(t) [x (r)—1]+r ct} E]:o [671" [u+R(Tu)] ’ T, < to]

Z inf {efA(t) [fnx(r)fl]+rct} inf _ - FX (y) ) (39)
0<t<to v20 | 7 e dFx (z)

Then we get, from (38), that

M (0)
PPIT, <ty < <e ™ sup I(r;t). 40
Tust} < g7 [M(T) [T, <to] ~  osien, r38) 0
Taking expectations proves (24). Using (39) in (40) yields (25). O
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