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Abstract

The Bayesian approach to statistics has been growing rapidly in popularity as an alterna-
tive to the classical approach in the economic evaluation of health technologies, due to the
significant benefits it affords. One of the most important advantages of Bayesian meth-
ods is their incorporation of prior information. Thus, use is made of a greater amount of
information, and so stronger results are obtained than with frequentist methods.

In a cost-effectiveness analysis, we relate the costs and effectiveness of the two tech-
nologies being compared, the parameters of interest being the mean effectiveness and mean
cost of each. The most common prior structure for these two parameters is the bivariate
normal structure. Since Stevens and O’Hagan (2002) showed that the elicitation of a prior
distribution on the parameters of interest plays a crucial role in a Bayesian cost-effectiveness
analysis, relatively few papers have addressed this issue, although Leal et al. (2007) recently
presented a computer-based model to elicit uncertainty on parameters.

In this paper we study the use of a more general (and flexible) family of prior distri-
butions for the parameters. In particular, we assume that the conditional densities of the
parameters are all normal. This structure allows us to incorporate a large range of prior
information. The bivariate normal distribution is included as a particular case of the condi-
tional prior structure.

KEY WORDS: Bayesian analysis, cost–effectiveness, prior information, conditionally spec-
ified distributions.
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2 Martel, Negŕın and V́azquez–Polo

1 Introduction

Clinical research is fundamentally a dynamic process in which any study must be consid-
ered in the context of continual updating of the state of the art. The Bayesian method is of
a dynamic nature in which initial beliefs, determined on the basis of a prior distribution, are
modified by new data, using the Bayes theorem.

Spiegelhalter et al. (1994) and Jones (1996) were the first to discuss the Bayesian
approach for statistical inference in the comparison of health technologies. Since then,
many studies have proposed the Bayesian approach to compare treatment options by means
of cost–effectiveness analysis (Brophy and Joseph, 1995; Heitjan, 1997; Al and Van Hout,
2000; Fryback et al., 2001; Vanness and Kim, 2002; Chilcott et al., 2003; Stevens et al.,
2002; among others).

To compare the results of two treatments we calculate the most prevalent measures of
the cost–effectiveness analysis of a new treatment: the incremental cost–effectiveness ratio
(ICER), the incremental net benefit (INB) and the cost–effectiveness acceptability curve
(CEAC).

The ICER is defined by:

ICER =
γ1 − γ0

µ1 − µ0
=

∆γ

∆µ
, (1)

whereγj andµj are the average costs and efficacies under treatmentj (1, new; and 0, for
the current or control treatment), respectively.

The INB of treatment 1 versus treatment 0 is defined as

INB(Rc) = Rc · (∆µ)− (∆γ) , (2)

for eachRc, which is interpreted by O’Hagan and Stevens (2001) as the cost that decision–
takers are willing to accept in order to increase the effectiveness of the treatment applied by
one unit. Thus, analyzing whether the alternative treatment is more cost effective than the
control treatment is equivalent to determining whetherINB(Rc) is positive.

In practice, it is not a simple matter for the decision–taker to determine a singleRc,
and so a cost–effectiveness acceptability curve (CEAC) is constructed. This curve provides
a graphical representation of the probability of the alternative treatment being preferred
(Pr(INB(Rc) > 0)) for each valueRc. This interpretation of the CEAC, in terms of
probability, is only possible when the Bayesian approach is adopted.

Most published studies on cost–effectiveness analysis assume normality of the cost and
effectiveness generation distribution (Willan and O’Brien, 1996; Laska et al., 1997; Stinnett
and Mullahy, 1998; Tambour et al., 1998; Heitjan et al., 1999). The normal–case was
examined by O’Hagan et al. (2001), who considered the patient level–data{xij : i =
1, 2, ..., nj ; j = 0, 1} from a clinical trial, wherexij = (eij , cij). The indexj is used to
note the treatment andnj denotes the sample size for each treatmentj.

We denote byf(xij |θj) the parametric distribution generating dataxij from treatment
j. The parameters of this function are the mean cost (γj), the mean efficacy (µj) and the
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variance–covariance matrixΣj . Then the likelihood is:

`(x̄|θ0, θ1) =
1∏

j=0

nj∏

i=1

f(xij |θj). (3)

The most usual model for datāx is to assume thatf(xij |θj) is a bivariate normal distri-
bution for each treatmentj

f(xij |θj) = (2π|Σj |)−1/2 exp
{
−1

2
(xij − αj)

′Σ−1
j (xij − αj)

}
. (4)

A Bayesian analysis of model (4) requires the specification of a prior distribution on
(θ0, θ1) = ((α0,Σ0), (α1,Σ1)), whereαj = (µj , γj), i.e. the mean efficacy and cost
for treatmenti, respectively.

Advocates of frequentist statistical methods argue that prior information is intrinsically
subjective and therefore has no place in science. However, the incorporation of prior in-
formation allows Bayesian methods to access more information and so to produce stronger
inferences. The incorporation of prior information can provide more realistic conclusions,
particularly where sample sizes are relatively small, as is often the case in cost–effectiveness
analysis. Stevens and O’Hagan (2002) discuss the advantages of incorporating prior infor-
mation in cost–effectiveness analysis of clinical trial data, exploring mechanisms to safe-
guard scientific rigor in the use of prior information.

A convenient class of prior distributions is a general conditional–conjugate prior.
Specifically, O’Hagan et al. (2001) assume a bivariate normal distribution forαj and an
inverse Wishart prior distribution for the variance matricesΣi.

In this paper we study the use of a more general family of prior distributions for the
parametersαj . In particular, we assume that the conditional density ofµj for a givenγj

and the conditional density ofγj for a givenµj are both normal. This assumption varies
distinctly from one of classical bivariate normality with its familiar elliptical contours.

The paper is organized as follows. Section 2 presents the normal case of the cost–
effectiveness analysis with prior distributions based on conditional specification. In Sec-
tion 3 some examples are given to show that the methodology is readily applicable. We
use a practical application with real data from a clinical trial, comparing two alternative
treatments for asymptomatic HIV patients. Section 4 presents a discussion of the results
obtained and some conclusions are drawn.

2 Bayesian cost–effectiveness analysis with prior distributions
based on conditional specification

Our basic prior formulation for model (4) assumes that the joint distribution factorizes as

π(θ) = π(α0) · π(α1) · π(Σ0) · π(Σ1). (5)
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That is, we assume independence between treatments and between the means (αj) and
the variance matrix (Σj). We assume inverse Wishart prior distributions for the variance
matricesΣ0 andΣ1. Specifically, we takeΣj ∼ IW (Aj , fj) the prior density of which is

π(Σj) ∝ |Σj |(−fj+3)/2 exp
{
tr(Σ−1

j Aj)/2
}

,

over the space of positive–definite2 × 2 matrices. Thusfj is the prior degrees of freedom
parameter and the prior expectation ofΣj is (fj − 3)−1Aj , providedfj > 3.

Likewise it is reasonable to assume a prior normal distribution ofµj for a givenγj

and a prior normal distribution ofγj for a givenµj . The bivariate normal distribution was
proposed in the paper of O’Hagan et al. (2001), but that is only a particular case with
normal conditionals. In this paper we extend the analysis to consider the class of all joint
densities with normal conditionals.

Castillo and Galambos (1989) show the specification of the class of all bivariate den-
sities with normal conditionals. We seek to obtain all joint densitiesfµ,γ(µ, γ) such that
every conditional density ofµ givenγ = γ0 is normal with meanδ1(γ) and varianceσ2

1(γ)
(which may depend onγ) and every conditional density ofµ givenµ = µ0 with meanδ2(µ)
and varianceσ2

2(µ) (which may depend onµ).
These authors found that all the bivariate densities with normal conditionals are those

of the form

fµ,γ(µ, γ) = exp





(
1, µ, µ2

)



m00 m01 m02

m10 m11 m12

m20 m21 m22







1
γ
γ2








. (6)

The conditional expectations and variances are:

E[µ|γ] = − m10 + m11 · γ + m12 · γ2

2(m20 + m21 · γ + m22 · γ2)
, (7)

Var[µ|γ] = − 1
2(m20 + m21 · γ + m22 · γ2)

,

E[γ|µ] = − m01 + m11 · µ + m21 · µ2

2(m02 + m12 · µ + m22 · µ2)
,

Var[γ|µ] = − 1
2(m02 + m12 · µ + m22 · µ2)

.

The distribution with density of the form (6) is an eight–parameter family of densities.
The coefficientm00 is a normalizing constant that is determined by the other coefficientsm
and the requirement that the density integrates to 1.

We encounter a great variety of distributions for different values of them parameters.
Some of these distributions are markedly different from classical bivariate normal densities.
We now show the values of them parameters for some particular cases.
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• Independence:If we assume prior independence between the mean of the effective-
ness (µ) and the mean of the costs (γ) for a given treatment, the conditional distri-
butions do not depend on the other parameter, and the conditional expectations and
variances will be of the form:

E[µ|γ] = E[µ] = − m10

2 ·m20
, (8)

Var[µ|γ] = Var[µ] = − 1
2 ·m20

,

E[γ|µ] = E[γ] = − m01

2 ·m02
,

Var[γ|µ] = Var[γ] = − 1
2 ·m02

.

Thus, the conditions for independence are that them’s satisfy the following condi-
tions:

m11 = m12 = m21 = m22 = 0, m20 < 0, m02 < 0. (9)

• Bivariate normal distribution

The termsµ and γ are said to have a bivariate normal distribution, denoted by
(µ, γ) ∼ N2(δµ, δγ , σµ, σγ , ρ), if

π(µ, γ|δµ, δγ , σµ, σγ , ρ) =
1

2πσµσγ

√
1− ρ2

exp
{

Q

2(1− ρ2)

}
,

whereQ is the quadratic expression

Q =
(µ− δµ)2

σ2
µ

− 2ρ(µ− δµ)(γ − δγ)
σµσγ

+
(γ − δγ)2

σ2
γ

.

The conditional distributions, too, are normal with mean and variance

E(µ|γ) = δµ +
ρσµ

σγ
(γ − δγ), (10)

Var(µ|γ) = σ2
µ(1− ρ2),

E(γ|µ) = δγ +
ρσγ

σµ
(µ− δµ),

Var(γ|µ) = σ2
γ(1− ρ2).

From expressions (7) and (10) we can elicit the prior information. Thus, the condition
for the bivariate normal distribution is that them’s satisfy the following conditions
(Arnold et al., 2001a,b).

m12 = m21 = m22 = 0, m20 < 0, m02 < 0 and m2
11 < 4m02m20. (11)
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• Other cases:

The improvement obtained from the use of conditionally specified priors is the wide
range of prior information that may thus be elicited. Besides the bivariate normal dis-
tribution, there are other combinations ofm′s that have non–normal marginal den-
sities. In particular, we can encounter bimodal or even trimodal densities. These
distributions must satisfy the sufficient conditions for integrability of (6) (Gelman
and Meng, 1991; Arnold et al., 2000; Arnold et al., 2001a).

m22 < 0, 4m22m02 > m2
12, 4m22m20 > m2

21. (12)

However, we must pay a price for the flexibility of our prior structure, namely that
there are eight hyperparameters to assess. We recommend the method for matching
conditional moments proposed by Arnold et al. (1998). For a conditionally specified
prior such as (6-7), we can try to match conditional moments, whose approximate
values will be supplied by the experts. In our analysis, we need at least eight con-
ditional moments to determine all the hyperparameters. However, eight conditional
moments might not be enough to determine the prior information. It is preferable for
the expert to supply more than eight conditional moments. Moreover, it is likely that
such prior values will not be consistent. Therefore, we can elicit the eight hyperpa-
rameters by minimizing the deviance between the conditional moments of the form
(7) and those provided a priori by the experts.

Let us assume that prior assessed values for the conditional means and variances of
the effectiveness and cost are obtained for several different given values of the cost
and effectiveness, respectively.

E[µ|γp1 ] = ep1 ∀p1 = 1, 2, . . . , P1. (13)

Var[µ|γp2 ] = var(e)p2 ∀p2 = 1, 2, . . . , P2.

E[γ|µp3 ] = cp3 ∀p3 = 1, 2, . . . , P3.

Var[γ|µp4 ] = var(c)p4 ∀p4 = 1, 2, . . . , P4.

whereP1 + P2 + P3 + P4 ≥ 8.

A unique solution for this system of equations is unlikely to be possible for any choice
of the eight hyperparameters. One solution is to allow any deviance between the prior
conditional moment and the knowledge of the expert. We define as the objective
function the sum of the squared deviances. The hyperparameters are obtained by
minimizing the objective function subject to constraints (12). The prior distribution
obtained must be checked by the experts so as not to obtain local minima in the
optimization.
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Prior information that cannot be specified using the bivariate normal distribution can
be elicited by this method. We show some examples in which the information should
be specified on the basis of conditionally specified prior distributions.

Assume we have prior information about the effectiveness of a given treatment from
two different studies. Suppose, moreover, that the effectiveness and the cost esti-
mated for each treatment are different, and that both studies are equally credible. The
bivariate normal distribution is not appropriate to describe this prior information, but
a conditionally specified prior distribution can incorporate the bimodality of this prior
information.

Let us now assume there is prior information about the effectiveness and cost of a
treatment (mean and variance). Moreover, we know the treatment involves some
risk, and that there is a possiblity that complications may appear. In this case, the
effectiveness is lower and the costs higher. This prior information can be modelled
by a bimodal bivariate distribution, using conditionally specified prior distributions.

3 Example

The data used in this section were obtained from a real clinical trial in which a comparison
was made between two highly–active antiretroviral treatment protocols applied to asymp-
tomatic HIV patients (Pinto et al., 2000).

We obtained data on the direct costs (of drugs, medical visits and diagnostic tests),
and on the effectiveness, based on health–related life–quality variables, using EuroQol–5D.
This is an instrument for the self–evaluation of personal health, consisting of five questions
that investigate five aspects of health–related life quality, based on a visual analogue scale
(VAS) (Brooks, 1996). This scale simulates a thermometer with a minimum of0 and a
maximum of100. The0 represents the worst health state imaginable, and the100, the best.
As a measure of effectiveness, we used the variation in the VAS at the end of the study.

In this exercise, we compared two three–way treatment protocols. The first of these
(d4T + 3TC + IND) combined the drugs estavudine (d4T), lamivudine (3TC) and indi-
navir (IND); the second treatment protocol (d4T + ddl + IND) combined estavudine (d4T),
didanosine (ddl) and indinavir (IND).

Table 1 summarizes the statistical data. The d4T + ddl + IND treatment was more
costly than the d4T + 3TC + IND treatment, by an average of164.82 euros. When the
VAS variation was used as the measure of effectiveness, the d4T + ddl + IND treatment was
more effective because, on average, the patients who received this treatment experienced an
improvement in their life quality of4.94 units, while those who were given the d4T + 3TC
+ IND treatment only experienced a VAS improvement of4.56 units.

• Independence

The first analysis shown is made under the assumption of independence. For the
purpose of this analysis, we take the design of the study to imply prior expectations
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Table 1: Statistical summary of costs (in thousands of euros) and effectiveness (change in
VAS).

d4T + 3TC + IND d4T + ddl + IND
Statistical measure Cost Change in VAS Cost Change in VAS

Mean 7.142 4.56 7.307 4.94
s.d. 0.001573 15.17 0.001720 13.98
n n0 = 268 n1 = 93

for the parameters of interest. We assume an average of 4.5 units of effectiveness
for the control treatment (d4T + 3TC + IND), with a prior variance of 2.25. For this
treatment, the design anticipates an average cost of 5 thousand euros, with a variance
of 4. The value of them parameters is elicited directly, in the knowledge of the prior
mean and variance of effectiveness and cost. For this prior information, the values
are:

m01 = 1.25,m02 = −0.125,m10 = 2, m11 = 0,

m12 = 0,m20 = −0.2222,m21 = 0,m22 = 0.

The elicitation process is very similar for the new treatment (d4T + ddl + IND). In
this case, we assume that the treatment is less effective, with an average of 4 units
of effectiveness and a prior variance of 2.5. This treatment is also more expensive,
with a prior mean cost of 6000 euros, and a variance of 6.25. The values of them
parameters for this treatment are

m01 = 0.96,m02 = −0.08,m10 = 1.6,m11 = 0,

m12 = 0,m20 = −0.2,m21 = 0,m22 = 0.

We also use a diffuse prior distribution for the matrix variancesΣi. Under the as-
sumption of noninformative priors, we setA0 = A1 = diag (1, 1), f0 = f1 = 2,
wherediag (ai) is then × n diagonal matrix withai elements. This assumption is
repeated in the following analysis.

Figure 1 shows the joint distribution of the prior information of effectiveness and cost
for each treatment, and the joint distribution of the prior incremental effectiveness and
cost between treatments.

The posterior distribution has been simulated using WinBUGS (Spiegelhalter et al.,
2000). Three parallel chains and a single long chain were used for diagnostic assess-
ment (checked using CODA software). A total of 10000 iterations were carried out
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Figure 1: Prior joint distribution ofµ andγ.

(after a burn–in period of 40000 simulations). The constantm00 is not required to
ensure convergence.

Table 2 shows the posterior analysis for the independence case. The posterior in-
cremental effectiveness is estimated as -0.02928 units with a standard deviation of
1.328. The incremental cost is estimated as 0.162 units.

Figure 2 shows the cost–effectiveness plane and the cost–effectiveness acceptability
curve; it is apparent that the treatment (d4T + ddl + IND) will never be preferable
to the treatment (d4T + 3TC + IND), as the probability of a positive INB is always
below 50%.
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Table 2: Posterior moments: mean and standard deviation.

Independence Bivariate-Normal distribution Bimodal case
µ0 4.535 (0.7905) 4.443 (0.786) 3.345 (0.7774)
γ0 7.138 (0.09529) 7.138 (0.0953) 7.13 (0.09561)
µ1 4.506 (1.069) 4.42 (1.059) 2.125 (0.8673)
γ1 7.3 (0.1785) 7.299 (0.1785) 7.292 (0.1829)
∆µ -0.02928 (1.328) -0.02364 (1.317) -1.22 (1.165)
∆γ 0.162 (0.2021) 0.1612 (0.2021) 0.162 (0.2064)

• Bivariate normal distribution:

The previous analysis was repeated under the assumption of a correlation between
cost and effectiveness for each treatment. In particular, we assumed a prior cor-
relation ofρ = −0.2. By incorporating this information to the prior information
described in the previous subsection, we elicited the following prior structure:

m01 = 1.614583333,m02 = −0.1302083333,m10 = 2.4305555,m11 = −0.0694444,

m12 = 0,m20 = −0.23148148,m21 = 0,m22 = 0,

for the (d4T + 3TC + IND) treatment, and

m01 = 1.210818510,m02 = −0.0833333,m10 = 1.982894432,m11 = −0.05270462766,

m12 = 0,m20 = −0.208333333, m21 = 0,m22 = 0,

for the (d4T + ddl + IND) treatment.

Figure 1 shows the joint distribution of the prior information of effectiveness and cost
for each treatment, and the joint distribution of the prior incremental effectiveness and
cost between treatments.

The results are very similar to those of the previous analysis. Figure 2 shows the
cost–effectiveness plane and the cost–effectiveness acceptability curve.

• Other case:

In this example, we show a prior bimodal density for the effectiveness and cost for
each treatment.

Suppose that, if there are no complications during the study, the mean effectiveness
of the (d4T + 3TC + IND) treatment is close to 8 units, and the mean cost is about
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Figure 2: Posterior joint distribution ofµ andγ.

2000 euros. However, there is a certain probability that treatment complications will
appear. With complications, the mean effectiveness is close to 2 units, and the mean
cost is 8000 euros.

To elicit this prior information through a conditionally specified prior distribution,
we compile information about conditional moments. Table 3 shows the conditional
moments employed in the elicitation process.

With respect to the optimization problem explained in the previous section, we now
calculate the values of the hyperparameters.

m01 = 9.393073,m02 = −0.6198139,m10 = 8.144171,m11 = −1.811442,
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Table 3: Prior conditional moments.

Moment Condition (d4T+3TC+IND) (d4T+ddl+IND) Condition (d4T+3TC+IND) (d4T+ddl+IND)

E(µ|γ) γ = 1 9 9 γ = 1.5 8.2 8.2
γ = 2 8 8 γ = 2.5 8 8
γ = 3 7.5 7.5 γ = 3.5 7.5 7.5
γ = 4 7.2 7.2 γ = 5 3.2 3.2
γ = 6 2.2 2.2 γ = 7 0.7 0.7
γ = 8 0.7 0.7 γ = 9 0

γ = 9.5 0 0 γ = 10 0.5 -0.5
Var(µ|γ) γ = 2.5 1.25 1.25 γ = 4.5 2.25 2.25

γ = 8 1.40 1.40
E(γ|µ) µ = −3 7.5 9 µ = −2 8 10

µ = −1 8.2 10.58 µ = 0 8 10
µ = 1 7.2 7.7 µ = 2 6.5 6.6
µ = 3 5.5 5.5 µ = 4 4.3 4.3
µ = 5 3.3 3.3 µ = 6 3.3 3.3
µ = 7 3.2 3.2 µ = 8 3.2 3.2
µ = 9 3 3 µ = 10 2.9 2.9
µ = 11 2.9 2.9

Var(γ|µ) µ = 0 0.3025 0.3025 µ = 3 0.4225 0.4225
µ = 8 1.890625 1.890625

m12 = 0.1012311,m20 = −0.5240978,m21 = 0.1412233,m22 = −0.01469736.

For the (d4T + ddl + IND) treatment, the experts would expect a higher cost and
lower effectiveness for treatment with complications. Thus, for an effectiveness of
0, the expected cost would be 10000 euros. Table 3 shows the conditional moments
assessed by the expert. The values of the parameters of the prior distribution are:

m01 = 7.507383,m02 = −0.4013869,m10 = 67.074594,m11 = −1.039000,

m12 = 0.02305853,m20 = −0.4792257,m21 = 0.1209304,m22 = −0.01653587.

Figure 1 shows the joint distribution of the prior information on effectiveness and
cost for each treatment, together with the joint distribution of the prior incremental
effectiveness and cost between treatments. We assume that effectiveness and cost are
not the same for treatment without complications as for treatment with complications.
There was found to be a bimodal joint distribution for cost and effectiveness. This
analysis open a wide range of possibilities for incorporating different prior beliefs
distant from the conventional bivariate normal distribution.
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The posterior distribution is estimated using Markov Chain Monte Carlo methods.
Figure 2 shows the measure used to take decisions. No further comment is made on
the results of the analysis because they are not comparable, as the prior information
is different for each model.

4 Conclusion

The Bayesian approach to cost–effectiveness analysis has been growing rapidly in popular-
ity as an alternative to the classical approach in the economic evaluation of health technolo-
gies. For instance, in the United Kingdom the National Institute for Clinical Excellence
(NICE) specifically accepts Bayesian approaches in its guidance to sponsors on making
submissions.

The Bayesian approach allows the incorporation of prior information. In a fully
Bayesian analysis, the procedures used to elicit expert opinion are an active research is-
sue. The most common prior structure for mean effectiveness and mean cost is the bivariate
normal structure.

In this paper we study the use of a more general family of prior distributions for the
mean of the effectiveness and cost. In particular, we assume that the conditional density of
the mean effectiveness for a given mean cost and the conditional density of the mean cost
for a given mean effectiveness are both normal.

The improvement gained over the use of conditionally specified priors is the wide range
of prior information that may be elicited. Prior information of more than one source, or
different structures of effectiveness and costs depending on whether complications occur,
are some cases whereby a conventional bivariate prior distribution is not enough to specify
the prior information.

A practical example with real data shows the flexibility of this analysis, incorporating
a wide range of possible prior knowledge. Conventional cases, such as the independence
case and bivariate prior information, are included as particular cases of this more general
analysis.

The posterior distribution is easily simulated using Markov Chain Monte Carlo tech-
niques.
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[19] Pinto, J., Ĺopez, C., Bad́ıa, X., Corna, A. & Benavides, A. (2000). Análisis coste–
efectividad del tratamiento antirretroviral de gran actividad en pacientes infectados
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