Self-perceived health status of schizophrenic patients in Spain: analysis of geographic differences

Juan M Cabasés‡, Eduardo Sánchez, Francisco J Vázquez-Polo, Miguel A Negrín and Emilio J Domínguez

This report explores the use of regression models for estimating health status of schizophrenic patients from a Bayesian perspective. Our aims are: to obtain a set of values of health states of the EQ-5D based on self-assessed health from a sample of schizophrenic patients; and to analyze the differences in the health status and in patients’ perceptions of their health status between four mental-health districts in Spain. The authors develop two linear models with dummy variables. The first model seeks to obtain an index of the health status of the patients using a visual analog scale as a dependent variable and the different dimensions of EQ-5D as regressors. The second model allows to analyse the differences between the self-assessed health status in the different geographic areas and also the differences between the patients’ self-assessed health states, irrespective of their actual health state, in the different geographic areas. The analysis is done using a Bayesian approach with Gibbs sampling (computer program WinBUGS 1.4). Data concerning self-assessed EQ-5D with visual analog scale from four geographic areas of schizophrenic patients were obtained for the purposes of this analysis. The health status index for this sample was obtained and the differences for this index between the four geographic areas were analyzed. The study reveals variables that explain the differences in patients’ health status and health state assessment. Four possible scenarios are considered.

Clinical decisions cannot be made without a prior analysis of the cost and effectiveness of treatment, particularly for disorders with a high morbidity rate, such as schizophrenia. According to the 1993 World Bank report [1], although neuropsychiatry disorders constitute the second most prevalent noninfectious disease, they receive a disproportionately small allocation of resources in countries with a consolidated market economy. In Spain, the PSICOST group has contributed to developing a methodology to evaluate services and the costs arising from chronic mental illness in Spain [2–6].

In this work, which is part of a wider research on cost and effectiveness of treatment of schizophrenia carried out in Spain [7], the authors address the effectiveness aspect of the economic approach to the treatment of schizophrenia. Focus is then placed on the measurement of effectiveness through health indexes, with a specific emphasis on the appropriateness of using a single health index at national level, or if regional differences in the index, if they exist, should be taken into account when designing healthcare policy. The authors check for these interregional differences, and more specifically, for those in the health states valuations assigned by patients of different regions.

The main finding of the paper is the verification not only of the existence of regional differences in health status of schizophrenic patients in our representative sample of the selected samples in four mental healthcare districts, but also in the health states valuations that patients give to their health states. The relevance for policy making is that such differences should be taken into account in resource allocation and healthcare development in the treatment of schizophrenia.
In this report, the authors use regression models to build up a value set of health states of the EQ-5D using Bayesian methods. Bayesian methodology allows to introduce previously obtained information in the parameters of the coefficient distributions. In this case, information from previous years was employed to estimate the coefficient distributions, means and standard deviations. Our aims are, firstly, to obtain a set of values of health states of the EQ-5D based on self-assessed health from a sample of schizophrenic patients and, secondly, to analyse the differences in the health status and in patients’ perceptions of their health status between four mental-health districts in Spain.

Materials & methods

Health measurement

For measurement of health purposes, a well-established health instrument, the EQ-5D, was employed [8]. The EQ-5D questionnaire is a standardized, generic instrument concerning health-related quality of life for describing and valuing health that was designed by the EuroQol Group. It is a two-part instrument. Part one records self-reported problems for each of five domains: mobility (MO), self-care (SC), usual activities (UA), pain/discomfort (PD) and anxiety/depression (AD). Each domain is divided into three levels of severity corresponding to no problem, some problem and extreme problem. The combination of these levels defines a total of 243 health states. Part two records the subject’s self-assessed health on a visual analog scale (VAS), with a vertical 20-cm line on which the best and worst imaginable health states scores 100 and zero, respectively.

The aim of the EQ-5D is to generate a cardinal health index, which can be used in economic evaluation. Currently, the most widely used value set of the 243 health states of the EQ-5D was developed by Dolan [9], and it is being used in cost–utility analysis. They do not usually consider the possibility of differences in the health state valuations between regions or countries, which could lead to bias in the analysis.

Data

Data analysed in this study were obtained from 4 small areas, selected as being representative of different socio-economic contexts and of different kinds of organization and availability of services. The four areas analysed in the study were in the provinces of Barcelona, Granada, Madrid and Navarre [12].

For each centre, we selected a representative sample of cases of schizophrenia, determined by the prevalence of cases treated. Criteria for inclusion in the study were: diagnosis of schizophrenia (DSM-IV diagnosis) [13], aged 18-65 years and having been in contact with the mental health treatment services in one of the selected areas within the six-month period designated for inclusion. After excluding patients with a primary diagnosis of neurological disorder or mental handicap, a sample of 356 patients was obtained. The patients were evaluated at three instants: at the beginning of the study, after one year, and after two years. Because of the characteristic instability of the population, the number of patients for whom EQ-5D data were obtained was lower than the original sample, and this decreased further over time. We analysed only the observed data.

Table 1. Healthcare area data of the four mental healthcare areas studied.

<table>
<thead>
<tr>
<th>Healthcare area</th>
<th>Province</th>
<th>Inhabitants</th>
<th>Number of patients</th>
<th>Source data record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavá</td>
<td>Barcelona</td>
<td>135,000</td>
<td>86</td>
<td>Gavá mental health centre</td>
</tr>
<tr>
<td>loja</td>
<td>Granada</td>
<td>63,490</td>
<td>73</td>
<td>Schizophrenia cases in the South Granada area</td>
</tr>
<tr>
<td>Salamanca</td>
<td>Madrid</td>
<td>142,001</td>
<td>105</td>
<td>Psychiatric cases in the Madrid region</td>
</tr>
<tr>
<td>Burlada</td>
<td>Navarre</td>
<td>65,000</td>
<td>92</td>
<td>Navarre health information system (SISNA)</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>405,491</td>
<td>356</td>
<td>-</td>
</tr>
</tbody>
</table>
Bayesian modeling

This paper uses regression models to build up a value set of health states of the EQ-5D using Bayesian methods. Bayesian methodology allows the incorporation in the coefficient distribution informations on the parameters previously obtained, through mean and standard deviation. In this study, the authors use information from previous periods.

In Bayesian methodology, prior information on the parameters can be combined with data. Parameters are assumed to be random variables described by their probability distributions. The distribution that combines the prior distribution with data are known as posterior distribution. Browne and Draper offer a detailed comparison of both types of models, classic and Bayesian [14].

In this work, the authors use noninformative prior distributions as a first approach to the problem for the first instance. The authors then use the posterior information from the first instant as the prior for the second. The same procedure is followed to obtain the posterior of the third. Therefore, a bayesian sequential analysis to obtain the true value of the parameters is adopted.

Bayesian estimation is achieved using Markov Chain Monte Carlo (MCMC) simulation techniques [15]. With MCMC simulation techniques, when the posterior distribution conditioned for a group of parameters has a known format, then it is possible to derive values for it directly. This process is known as Gibbs sampling and is used in the simulations in this work [16].

All computation and simulation was conducted with Gibbs sampling, implemented using the computer program WinBUGS1.4 [17]. The authors used there parallel chains and a single long chain for diagnostic assessment (checked using CODA software). A total of 100000 iterations were carried out (after a burn-in period of 10000), taking only a few minutes on a Pentium personal computer.

Modeling

Two linear models with dummy variables are presented. The aim of the first model is to obtain an index of the health status of the patients using a VAS as a dependent variable and the different dimensions of EQ-5D as regressors.

The second model considers, firstly, the differences between the self-assessed health states in the different geographic areas. For this purpose, the authors used the index obtained from Model 1 as the dependent variable, and dummies to represent the different geographic areas as regressors (Model 2.1). The second purpose of this model is to test the differences by geographic area in the patients’ self-assessed health states, irrespective of their actual health state. To do this, the authors used as the dependent variable the difference between the VAS and the index obtained in Model 1; the regressors, again, were dummies representing the different geographic areas (Model 2.2).

Linear model with dummy variables (Model 1)

Dummy variables are included to evaluate the move between Levels 1 and 2 as compared with that of Levels 2 and 3. Two dummy variables are used for each dimension. In addition, a variable N3 is included. A similar model has been used by Dolan and Greiner et al. [11,18]:

\[
\begin{align*}
\beta_j & \sim N(\beta, \Sigma^{-1}), j = 0, \ldots, 11 \\
\text{VAS}_{\text{new}} & \sim N (m_0, \Omega_{\mu}), \Omega_{\mu} \sim \text{Ga}(a, b)
\end{align*}
\]

The variables used in this model take the following values: MO2, SC2, UA2, PD2, AD2 = 1 if the score is 2; 0 otherwise. MO3, SC3, UA3, PD3, AD3 = 1 if the score is 3; 0 otherwise. N3 = 1 if the score is 3 in one of the dimensions; 0 otherwise.

When this model implies a lack of initial knowledge from noninformative prior distributions, this information is described by the following parameters:

\[
\beta = (0, 0, \ldots, 0), \quad \Sigma^{-1} = \begin{bmatrix}
0.0004 & 0 & \ldots & 0 \\
0 & 0.0004 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0.0004
\end{bmatrix}
\]

\[
a = 0.01 \text{ and } b = 0.01
\]
The main diagonal of the matrix Σ^{-1} represents the precision of the parameters. This precision is defined by the inverse of the variance [17]. In the present study, a noninformative prior variance is taken as one for which there is a 95% probability that the value of the parameter lies in the range (-100,100). This is because the regressors are dummy variables (0, 1). Therefore, a variation of one unit in the latter should not increase (decrease) the dependent variable above (below) 100 units.

In order to incorporate the prior information, the authors transfer the posterior information from one regression to another. The information is obtained by means of estimations of the mean and of the variance of the parameters, as follows:

$$\beta = (\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_{11}), \Sigma^{-1} = \begin{bmatrix} \frac{1}{s^2d^0} & 0 & \cdots & 0 \\ 0 & \frac{1}{s^2d^1} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{s^2d^{11}} \end{bmatrix}$$

where $\hat{\beta}_j$ represents the estimated mean of parameter j with the information from the preceding periods, and where $1/s^2d_j$ represents the estimated precision associated with the parameter j.

The dependent variable in Model 2.1 is EQ_{index} as the following:

$$m_i = \hat{\beta}_0 + B_i \hat{\beta}_1 + G_i \hat{\beta}_2 + M_i \hat{\beta}_3$$

Model 2.1 shows the differences in health status of the patients in the different areas, independently of whether the self-assessment of the patients in a given area by VAS is above (or below) the mean value. This is so because the index EQ_{index} was calculated for all the patients with the estimations obtained for the whole sample. Thus, the estimated parameter $\hat{\beta}_i$ represents the fact that there are i, has patients who present a better health status (if it is positive), or a worse one (if it is negative) with respect to the reference area.

Model 2.2 differs from Model 2.1 in the dependent variable, which is now $VAS_{score} - EQ_{index}$. This model shows the differences between areas between the health state and the value assigned to it. It is possible to see whether the patients in a given area have different subjective perceptions of a given health state. Therefore, the estimated parameter $\hat{\beta}_i$ represents the fact that a mean health state has a greater value, if positive (or a lesser one, if negative) for the patients in area i with respect to the assessment of the patients in the reference area.

The dependent variable in Model 2.2 is what we are unable to explain from the VAS of the patients’ health status (Model 1).

The prior information used in the estimation of Models 2.1 and 2.2 is included in the same way as in Model 1, as described above.

Models 2.1 and 2.2 present four possible scenarios:

Scenario 1

There are differences between the communities in Model 2.1, but not in Model 2.2. This is an index that is robust to regional changes. The different health states perceived are assessed equally, irrespective of the geographic area under study, and the index provides a good reflection of the relationship between health states and the assessment made by individuals by their VAS.

Scenario 2

No differences between the areas are observed in Model 2.1, but they are in Model 2.2. This implies that individuals assess themselves differently in different areas. The same health states receive different assessments depending on the geographic area. For policy purposes, it seems that the index should include regional weights to compensate for this difference in assessments.

Scenario 3

No differences are observed in either of the models. There are no regional changes in health states or in their assessment. We cannot affirm or deny the robustness of the index, because the health states that are assessed in the different areas are, on average, the same.

Scenario 4

There are differences between the two models. This is a scenario that is complex to interpret, because we must consider the signs of these differences. For example, if there is a positive difference in Model 2.1 and a negative one in Model 2.2 for a given area, this means that the area has, on average, better health states than the reference area, but that nevertheless, the patients, on their VAS, give themselves a worse assessment than do the patients in the reference area.

Table 3. Patients of the sample responding to EQ-5D questionnaire.

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Province</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavà</td>
<td>Barcelona</td>
<td>71</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>Loja</td>
<td>Granada</td>
<td>56</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>Salamanca</td>
<td>Madrid</td>
<td>72</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>Burlada</td>
<td>Navarre</td>
<td>78</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>277</td>
<td>235</td>
<td>211</td>
<td>---</td>
</tr>
</tbody>
</table>
Results

Table 4 shows the estimations made using noninformative prior information during the 3 years with Model 1, for the sample of patients with schizophrenia. The model relates the VAS scale with the dimensions of the EQ-5D. Note that some of the estimated parameters have positive values, which could lead to inconsistencies on the EQ-5D index for worse health states with a higher score.

Table 5 shows the estimations made with Model 1 using the posterior information from year 1 as the prior information for year 2 and the posterior information from year 2 as the prior information for year 3. The final two columns, for year 3, contain full regression information, as they use the information from the three periods. In these columns, note that all the slopes, except two associated with the MO3 and UA3 dummies, are negative. The parameters associated with MO3 and UA3 dummies are the only ones that are positive, but their mean values are practically zero and, moreover, they have the lowest absolute value. It should be taken into account that whenever these dummies have a value of one, so does the N3 dummy.

The constant in these models represents the mean assessment of the index EQ_{index} for the patients in Navarre. The other estimated coefficients show the deviation from the mean in the assessment of the index with respect to that obtained for Navarre.

For year 3 with informative prior information, the authors obtain the values of the index EQ_{index} for the 243 health states and, therefore, for each of the patients. For example, the value of the index for the health state 11223 is obtained by CTE - UA2 - PD2 - AD3 - N3 = 71.68 - 3.79 - 5.79 - 11.22 - 12.73 = 38.15.

The Bayesian credible intervals obtained through the marginal distributions of the coefficients provide the range of variation from the value of the index with a probability of 95%. Thus, if variable MO2 takes value 1 and all other tangents take value 0, in the model for year 3 with informative prior information, the index would take a value of 69.15 and have a 95% probability of being between values 65.5–72.84.

Table 6 shows the results of the estimation with Model 2.1 with noninformative prior information for year 1 and informative information for the other two years. The dependent variable for this estimation was the index EQ_{index} obtained from the estimation of Model 1 in year 3 with prior information from the previous two years.

The constant represents the mean assessment of the index EQ_{index} for the patients in Navarre. The other estimated coefficients show the deviation from the mean in the assessment of the index with respect to that obtained for Navarre.

As the same weights were used to create the index, the differences found between the areas are caused by the patients’ different health states.

Table 4. Simple linear model: VAS_{core} as the dependent variable for each of the years with noninformative prior information. Posterior mean (standard deviation in parenthesis) and Bayesian credible interval (model 1).

<table>
<thead>
<tr>
<th>Associated variables</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>BI (95%)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>CTE</td>
<td>70.35 (2.01)</td>
<td>(66.42, 74.28)</td>
<td>69.82 (2.23)</td>
</tr>
<tr>
<td>MO2</td>
<td>-0.50 (3.30)</td>
<td>(-6.96, 5.97)</td>
<td>-1.13 (3.74)</td>
</tr>
<tr>
<td>SC2</td>
<td>-7.03 (3.36)</td>
<td>(-13.63, -0.35)</td>
<td>-7.35 (3.78)</td>
</tr>
<tr>
<td>UA2</td>
<td>-7.37 (2.73)</td>
<td>(-12.84, -2.02)</td>
<td>-6.45 (3.11)</td>
</tr>
<tr>
<td>PD2</td>
<td>-5.56 (2.72)</td>
<td>(-10.89, -0.24)</td>
<td>-6.27 (3.06)</td>
</tr>
<tr>
<td>AD2</td>
<td>-5.52 (2.71)</td>
<td>(-10.70, -0.22)</td>
<td>-4.96 (2.99)</td>
</tr>
<tr>
<td>MO3</td>
<td>4.14 (6.54)</td>
<td>(-8.42, 17.02)</td>
<td>6.35 (7.48)</td>
</tr>
<tr>
<td>SC3</td>
<td>3.42 (8.54)</td>
<td>(-13.33, 20.43)</td>
<td>3.96 (9.46)</td>
</tr>
<tr>
<td>UA3</td>
<td>0.72 (6.47)</td>
<td>(-11.85, 13.26)</td>
<td>2.31 (7.36)</td>
</tr>
<tr>
<td>PD3</td>
<td>-10.40 (6.65)</td>
<td>(-23.36, 2.68)</td>
<td>-13.11 (7.39)</td>
</tr>
<tr>
<td>AD3</td>
<td>-8.61 (6.11)</td>
<td>(-20.72, 3.37)</td>
<td>-8.73 (6.90)</td>
</tr>
<tr>
<td>N3</td>
<td>-11.31 (6.31)</td>
<td>(-23.74, 0.92)</td>
<td>-11.57 (7.19)</td>
</tr>
</tbody>
</table>

BI (95%): Bayesian interval at 95% probability; SD: Standard deviation; VAS: Visual analog scale
The final column in Table 6 shows that the patients whose health states are the best are those from Barcelona. There is a 95% probability that their health states are between 4.65 and 8.19 points higher on the index EQ index than health states in Navarra. It should be taken into account that the highest value on this index is 71.68 and the lowest, 26.11, with the values not being rescaled between 0 and 100.

The overlapping distributions prevents us from stating that there are significant differences between health states in the geographic areas of Granada and Madrid. It is interesting to note, however, that in the area of Navarre, health states are somewhat worse than in the other areas, while in Barcelona they are clearly superior.

Table 7 illustrates the results of the estimation provided by Model 2.2, with noninformative prior information in year 1 as well as informative information for the other 2 years. The dependent variable for this estimation was calculated as: \(\text{VAS}_\text{score} - \text{EQ}_\text{index} \).
The final column of Table 7 shows that the patients in Granada assessed themselves below the mean value, at a 95% probability. In regards the other areas, no important differences were found in assessments of health status.

Figure 2 shows the posterior probability distributions of the parameters of Model 2.2 in year 3, with prior information about the two previous years. The values of the estimations have been reconstructed for ease of interpretation. A positive value on the ordinate axis means an over-assessment of the health states of the patients in a given area with respect to the mean, while a negative value implies a corresponding under-assessment.

Tables 6 & 7 and Figures 1 & 2 enable us to analyse the different scenarios that may occur in some areas with respect to others. This analysis is summarized in Table 8, which shows that four such scenarios are possible:

Scenario 1
Comparison of Navarre and Madrid with Barcelona. There are differences in health states, but not in individuals' assessments. This would indicate that the index is robust. This conclusion, however, cannot be generalized due to the great diversity of scenarios found.

Scenario 2
The case of Granada versus Madrid, in which health states, on average, are practically identical, and where, nevertheless, the assessments made by patients differ between the areas.

Scenario 3
This is the case we find on comparing Madrid with Navarre. The samples are homogeneous regarding both actual health states and their assessment by the patients.

Scenario 4
No conclusions can be drawn, since in one situation, the patients with a better health status report higher assessments (as in the case of Barcelona vs. Granada), but the opposite is true in another, as is the case of Granada versus Navarre.

Discussion
The differences by region or by country should be taken into account when EQ-5D is to be used as an index of quality of life. The present study shows that there are differences in the assessment of health states between different areas. Transferring the values of an index to another geographic area, or to another country, without taking into account such assessment differences could lead to erroneous conclusions being drawn.

From the annual development of Models 2.1 and 2.2, we can state that patients present great stability by geographic areas concerning variations in health states, and a great instability with regards to their VAS assessment, independently of their actual health state.

For informative prior information, the authors used that from the previous period or periods. To include this information, it was only necessary to estimate the mean and the standard deviation. This procedure has been carried out to facilitate the use of all existing information from the sample, thus obtaining more robust results in the coefficient estimation.
The prior information used was that available for previous years, except for the first year, when non-informative prior distribution data were used. Prior noninformative distributions were used in this study due to the lack of initial knowledge about the distribution of the prior parameters in other studies.

There are several studies showing the use of the instrument EQ-5D in schizophrenic patients in Spain [20–22] and other countries [23–26]. But we lack an index specifically obtained for schizophrenic patients. This leads some authors to use indexes from general population, and even from the general population of other countries. Looking at our results that confirm the existence of differences in valuation between regions, it seems that the results of those studies could not be adequate.

Limitations of the study

Some limitations should be mentioned. First, sample size is relatively small. Second, the authors do not discuss variables that could affect the quality of life, such as sociodemographic characteristics or differences in service availability, which could be different between the different areas and thus affect the quality of life of the patients. It should be noted, however, that the sample is representative of every catchment area included in the analysis. This is particularly relevant in Spain, where mental healthcare is provided by sectors. Furthermore, every case included in the study was reassessed by an external researcher previously standardized in the assessment battery used in this study.

Expert commentary

The authors results could have important implications for health policy. The knowledge of geographic differences in the health status of schizophrenic patients, as well as in the assessment of the health states, can ultimately contribute to a better assessment of need as well as to an improvement in policy design.

An index that measures quality of life through EQ-5D obtained for a specific geographic zone may even be more reliable for the purpose of economic evaluations even when using a smaller sample, than performing the analysis using the value set of a different population.

Five-year view

As a reflection for further research, it might be interesting to analyse whether the effect of each of the explicative variables on health status varies between geographic areas.

Acknowledgements

This project has received the financial help of the Spanish Fondo de Investigaciones Sanitarias (FIS97/1275) and the Spanish Health Services Research Network RIRAG (G03/061) (Red de Investigación de Resultados Aplicados a la Gestión en Discapacidad y Salud Mental). The authors are grateful for the comments made on an earlier version of the paper presented to Seventh Workshop on Costs and Assessment in Psychiatry Financing Mental and Addictive Disorders’ Venice, March 18–20, 2005, and greatly appreciate the comments of two anonymous referees.

Table 8. Differences between areas with a 95% probability.

<table>
<thead>
<tr>
<th>Areas</th>
<th>Model 2.1</th>
<th>Model 2.2</th>
<th>Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>B vs. G</td>
<td>Y</td>
<td>Y</td>
<td>Scenario 4</td>
</tr>
<tr>
<td>vs. M</td>
<td>Y</td>
<td>N</td>
<td>Scenario 1</td>
</tr>
<tr>
<td>vs. N</td>
<td>Y</td>
<td>N</td>
<td>Scenario 1</td>
</tr>
<tr>
<td>G vs. M</td>
<td>N</td>
<td>Y</td>
<td>Scenario 2</td>
</tr>
<tr>
<td>vs. N</td>
<td>Y</td>
<td>Y</td>
<td>Scenario 4</td>
</tr>
<tr>
<td>M vs. N</td>
<td>N</td>
<td>N</td>
<td>Scenario 3</td>
</tr>
</tbody>
</table>

Y: If differences exist at 95% probability.
N: No differences at 95% probability.
Key issues

- The EQ-5D questionnaire is a standardised, generic instrument concerning health-related quality of life for describing and valuing health aiming at obtaining a health unit, useful in economic evaluation.
- A Bayesian approach can incorporate prior knowledge on parameters through specification of prior distribution or incorporating prior empirical evidence on the parameters, thus getting more robust results.
- There are differences in the health status of schizophrenic patients and in patients’ valuations of their health status between four mental-health districts in Spain.
- The relevance for policy making is that such differences should be taken into account in resource allocation and healthcare development in the treatment of schizophrenia.

References
Papers of special note have been highlighted as:
• of interest
•• of considerable interest

9 Introducing paper of the EQ-5D from the EuroQol Group.
18 Program that carries out Bayesian inference on statistical problems.
20 Major study with a huge european sample on the health index using EQ-5D.
28 Patterson, TL, Kaplan RM, Jeste DV. Measuring the effect of treatment on quality of life in patients with schizophrenia - focus on utility-based measures. CNS Drugs 12(1), 49–64 (1999).
Affiliations

- Juan M Cabasés
 Department of Economics, Universidad Pública de Navarra, 31006 Pamplona, Spain
 Tél.: +34 948 169 143
 Fax: +34 948 169 721
 jmcabases@unavarra.es

- Eduardo Sánchez
 Department of Economics, Universidad Pública de Navarra, Spain

- Francisco J Vázquez-Polo
 Department of Quantitative Methods in Economics and Management, Universidad de Las Palmas de Gran Canaria, Spain
 Tél.: +34 928 451 806
 Fax: +34 928 458 225
 fjvpolo@dmc.ulpgc.es

- Miguel A Negrín
 Department of Quantitative Methods in Economics and Management, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

- Emilio J Domínguez
 Department of Economics, Universidad Pública de Navarra, Spain